scholarly journals A New Resource Management Scheme for Ad Hoc and Sensor Networks

2005 ◽  
Vol 1 (1) ◽  
pp. 9 ◽  
Author(s):  
Ronan De Renesse ◽  
Vasilis Friderikos ◽  
Hamid Aghvami

Ad hoc and sensor networks have received tremendous attention in the recent literature due to its unpredictable nature and its many applications. Imposing any kind of reliability in such networks represents a real challenge. In this paper, we propose a new resource management scheme which virtually reserves and releases resources at the network layer when necessary. Results show that our scheme distributes resources efficiently between Best Effort and Quality of Service traffics even when congestion arises.

Author(s):  
Azzedine Boukerche ◽  
Horacio A. B. F. Oliveira ◽  
Eduardo F. Nakamur ◽  
Richard W. N. Pazzi ◽  
Antonio A. F. Loureiro

2014 ◽  
Author(s):  
Ευάγγελος Χατζησταύρος

Τα επικοινωνιακά χαρακτηριστικά ενός ολοκληρωμένου συστήματος διαχείρισης για περιβαλλοντική παρακολούθηση, παρουσιάζονται σε αυτήν τη διατριβή. Η πλατφόρμα CYBERSENSORS αποτελείται από δύο διακριτά υποσυστήματα, ένα οπτικό και ένα σύστημα παρακολούθησης φυσικών και χημικών παραμέτρων, τα οποία λειτουργούν βάσει των προτύπων ΙΕΕΕ 802.11 και ΙΕΕΕ 802.15.4, αντίστοιχα. Ως προς το πρώτο, πραγματοποιείται συγκριτική ανάλυση της απόδοσης τριών διαφορετικών πρωτοκόλλων δρομολόγησης. Επιπλέον, παρουσιάζεται μια πρωτότυπη προσέγγιση ανάκτησης εικόνας σε περιβάλλον με θόρυβο. Οι κόμβοι του υποσυστήματος φυσικών/χημικών παραμέτρων σχηματίζουν ένα ΙΕΕΕ 802.15.4-συμβατό ασύρματο δίκτυο αισθητήρων. Εξετάζονται δύο διαφορετικές προσεγγίσεις υπολογισμού απόδοσης, για τοπολογίες αλυσίδας και αστέρα. Επιπλέον, παρουσιάζεται μια αναλυτική μέθοδος για τον υπολογισμού του δείκτη εκθετικής υποχώρησης, ο οποίος ορίζεται στο πρότυπο ΙΕΕΕ 802.15.4. Τα δεδομένα που συλλέγονται από τα δύο υποσυστήματα πρέπει να μεταφερθούν σε έναν απομακρυσμένο διακομιστή για περαιτέρω ανάλυση, μέσω μιας ευρυζωνικής σύνδεσης 3G. Στο τελευταίο κομμάτι της διατριβής, εξετάζονται οι απαιτήσεις της μετάδοσης και πραγματοποιείται μια εκτίμηση της χωρητικότητας uplink της σύνδεσης 3G.


2011 ◽  
Vol 5 (12) ◽  
pp. 1698-1710 ◽  
Author(s):  
C.-C. Tseng ◽  
M.-Y. Liu ◽  
S.-C. Lo ◽  
K.-C. Chen ◽  
H.-H. Chen

2007 ◽  
Vol 64 (5) ◽  
pp. 377-378
Author(s):  
Carla-Fabiana Chiasserini ◽  
Vikram Srinivasan

2009 ◽  
pp. 2833-2842
Author(s):  
Winston K.G. Seah ◽  
Hwee-Xian Tan

Mobile ad hoc networks (MANETs) form a class of multi-hop wireless networks that can easily be deployed on-the-fly. These are autonomous systems that do not require existing infrastructure; each participating node in the network acts as a host as well as a packet-forwarding router. In addition to the difficulties experienced by conventional wireless networks, such as wireless interference, noise and obstructions from the environment, hidden/exposed terminal problems, and limited physical security, MANETs are also characterized by dynamically changing network topology and energy constraints. While MANETs were originally designed for use in disaster emergencies and defense-related applications, there are a number of potential applications of ad hoc networking that are commercially viable. Some of these applications include multimedia teleconferencing, home networking, embedded computing, electronic classrooms, sensor networks, and even underwater surveillance. The increased interest in MANETs in recent years has led to intensive research efforts which aim to provide quality of service (QoS) support over such infrastructure-less networks with unpredictable behaviour. Generally, the QoS of any particular network can be defined as its ability to deliver a guaranteed level of service to its users and/or applications. These service requirements often include performance metrics such as throughput, delay, jitter (delay variance), bandwidth, reliability, etc., and different applications may have varying service requirements. The performance metrics can be computed in three different ways: (i) concave (e.g., minimum bandwidth along each link); (ii) additive (e.g., total delay along a path); and (iii) multiplicative (e.g., packet delivery ratio along the entire route). While much effort has been invested in providing QoS in the Internet during the last decade, leading to the development of Internet QoS models such as integrated services (IntServ) (Braden, 1994) and differentiated services (DiffServ) (Blake, 1998), the Internet is currently able to provide only best effort (BE) QoS to its applications. In such networks with predictable resource availability, providing QoS beyond best effort is already a challenge. It is therefore even more difficult to achieve a BE-QoS similar to the Internet in networks like MANETs, which experience a vast spectrum of network dynamics (such as node mobility and link instability). In addition, QoS is only plausible in a MANET if it is combinatorially stable, i.e., topological changes occur slow enough to allow the successful propagation of updates throughout the network. As such, it is often debatable as to whether QoS in MANETs is just a myth or can become a reality.


Sign in / Sign up

Export Citation Format

Share Document