scholarly journals Therapeutic applications of three-dimensional organoid models in lung cancer

Organoid ◽  
2021 ◽  
Vol 1 ◽  
pp. e6
Author(s):  
Chang Dong Yeo ◽  
Young-Pil Yun ◽  
Dong Hyuck Ahn ◽  
Yongki Hwang ◽  
Seung Hee Yang ◽  
...  

Lung cancer, which remains a major cause of mortality worldwide, is a histologically diverse condition and demonstrates substantial phenotypic and genomic diversity among individual patients, manifesting as both intertumoral and intratumoral heterogeneity. This heterogeneity has made it difficult to develop lung cancer models. Two-dimensional (2D) cancer cell lines have been used to study genetic and molecular alterations in lung cancer. However, cancer cell lines have several disadvantages, including random genetic drift caused by long-term culture, a lack of annotated clinical data, and most importantly, the fact that only a subset of tumors shows 2D growth on plastic. Three-dimensional models of cancer have the potential to improve cancer research and drug development because they are more representative of cancer biology and its diverse pathophysiology. Herein, we present an integrated review of current information on preclinical lung cancer models and their limitations, including cancer cell line models, patient-derived xenografts, and lung cancer organoids, and discuss their possible therapeutic applications for drug discovery and screening to guide precision medicine in lung cancer research. Altogether, the success rate of generating lung cancer organoids must be improved, and a lung cancer organoid culture system is necessary to achieve the goal of designing an individualized therapeutic strategy for each lung cancer patient.

2018 ◽  
Author(s):  
K. Yu ◽  
B. Chen ◽  
D. Aran ◽  
J. Charalel ◽  
A. Butte ◽  
...  

AbstractCancer cell lines are commonly used as models for cancer biology. While they are limited in their ability to capture complex interactions between tumors and their surrounding environment, they are a cornerstone of cancer research and many important findings have been discovered utilizing cell line models. Not all cell lines are appropriate models of primary tumors, however, which may contribute to the difficulty in translating in vitro findings to patients. Previous studies have leveraged public datasets to evaluate cell lines as models of primary tumors, but they have been limited in scope to specific tumor types and typically ignore the presence of tumor infiltrating cells in the primary tumor samples. We present here a comprehensive pan-cancer analysis utilizing approximately 9,000 transcriptomic profiles from The Cancer Genome Atlas and the Cancer Cell Line Encyclopedia to evaluate cell lines as models of primary tumors across 22 different tumor types. After adjusting for tumor purity in the primary tumor samples, we performed correlation analysis and differential gene expression analysis between the primary tumor samples and cell lines. We found that cell-cycle pathways are consistently upregulated in cell lines, while no pathways are consistently upregulated across the primary tumor samples. In a case study, we compared colorectal cancer cell lines with primary tumor samples across the colorectal subtypes and identified three colorectal cell lines that were derived from fibroblasts rather than tumor epithelial cells. Lastly, we propose a new set of cell lines panel, the TCGA-110, which contains the most representative cell lines from 22 different tumor types as a more comprehensive and informative alternative to the NCI-60 panel. Our analysis of the other tumor types are available in our web app (http://comphealth.ucsf.edu/TCGA110) as a resource to the cancer research community, and we hope it will allow researchers to select more appropriate cell line models and increase the translatability of in vitro findings.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3790
Author(s):  
Gro Elise Rødland ◽  
Sissel Hauge ◽  
Grete Hasvold ◽  
Lilli T. E. Bay ◽  
Tine T. H. Raabe ◽  
...  

Inhibitors of WEE1 and ATR kinases are considered promising for cancer treatment, either as monotherapy or in combination with chemo- or radiotherapy. Here, we addressed whether simultaneous inhibition of WEE1 and ATR might be advantageous. Effects of the WEE1 inhibitor MK1775 and ATR inhibitor VE822 were investigated in U2OS osteosarcoma cells and in four lung cancer cell lines, H460, A549, H1975, and SW900, with different sensitivities to the WEE1 inhibitor. Despite the differences in cytotoxic effects, the WEE1 inhibitor reduced the inhibitory phosphorylation of CDK, leading to increased CDK activity accompanied by ATR activation in all cell lines. However, combining ATR inhibition with WEE1 inhibition could not fully compensate for cell resistance to the WEE1 inhibitor and reduced cell viability to a variable extent. The decreased cell viability upon the combined treatment correlated with a synergistic induction of DNA damage in S-phase in U2OS cells but not in the lung cancer cells. Moreover, less synergy was found between ATR and WEE1 inhibitors upon co-treatment with radiation, suggesting that single inhibitors may be preferable together with radiotherapy. Altogether, our results support that combining WEE1 and ATR inhibitors may be beneficial for cancer treatment in some cases, but also highlight that the effects vary between cancer cell lines.


10.1038/87074 ◽  
2001 ◽  
Vol 27 (S4) ◽  
pp. 53-53
Author(s):  
Priya Dayananth ◽  
Terri McClanahan ◽  
Ferdous Gheyas ◽  
Marco Hernandez ◽  
Wei Ding ◽  
...  

Author(s):  
Angela Gradilone ◽  
Ida Silvestri ◽  
Susanna Scarpa ◽  
Stefania Morrone ◽  
Orietta Gandini ◽  
...  

2014 ◽  
Vol 3 (5) ◽  
pp. 1099-1111 ◽  
Author(s):  
Blanca D. Lopez‐Ayllon ◽  
Veronica Moncho‐Amor ◽  
Ander Abarrategi ◽  
Inmaculada Ibañez Cáceres ◽  
Javier Castro‐Carpeño ◽  
...  

Toxins ◽  
2016 ◽  
Vol 8 (2) ◽  
pp. 38 ◽  
Author(s):  
Irasema Oroz-Parra ◽  
Mario Navarro ◽  
Karla Cervantes-Luevano ◽  
Carolina Álvarez-Delgado ◽  
Guy Salvesen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document