scholarly journals Formulation and Evaluation of Sustained Release Tablets of Nateglinide by Using natural polymers

Author(s):  
Pavani Chowdary ◽  
T Sravani ◽  
MD Basheeruddin

<p>The purpose of this research work was to formulate and evaluate the sustained release tablets of <em>Nateglinide</em> 500mg, an antidiabetic drug. <em>Nateglinide </em>is an oral hypoglycemic agent. The tablets are prepared by direct compression method. The formulations were optimized by incorporating varying composition of Xanthan gum and guar gum as polymers, lactose as flow aid and magnesium stearate as lubricant. All the excipients are tested for compatibility with drug, which revealed that there was no physical and chemical interaction occurred. The Preformulation parameters such as bulk density, tapped density, compressibility index and Hausner’s ratio were analyzed. The friability, drug content, loss on drying, bulk density and percentage yield was evaluated for tablets. The effect of these variables on drug release also studied. The In-Vitro drug release studied were Performed in the USP dissolution apparatus-II using pH 0.1N HCl as dissolution media at 75 rpm speed and temperature of 37<sup>o</sup>c ± 5<sup>o</sup>c. The sampling was done at periodic time intervals of 1,4,8,12,16,20 and 24 hours and was replaced by equal volume of dissolution media after each withdrawal. The cumulative amount of drug release at different intervals is estimated using UV method. Based on the evaluation result the formulations F-7 was selected as best formulation. The tablets were found to follow first order kinetics and Higguchi mechanism of drug release, ‘n’ value is less than 0.5 which confirms that the drug release through the matrix was fickian diffusion.  </p>

Author(s):  
Pawan Avhad ◽  
Revathi Gupta

The sustained-release dosage form is a well-characterized and reproducible dosage form that is designed to control drug release profile at a certain rate to reach desired drug concentration in blood plasma or at the target site. There is immense demand in the market for new sustained-release formulations used for new drug molecules which release the drug at a sustained rate. Doxofylline is one of the widely useful drugs in the market and needs to be given in a single dose for a long duration of time. For the same, we have prepared a sustained released Doxofylline tablet. Aim: This research was done to design, formulate and evaluate Doxofylline sustained-release tablets by using different concentrations of Chitosan and Guar Gum.  Methods: The factorial design was used to prepare Doxofylline sustained-release tablet. Doxofylline sustained-release tablets were prepared to employ different concentrations of Chitosan, Guar Gum, Lactose, and Magnesium Stearate in different combinations by wet granulation technique. Total 9 formulations were designed, formulated, and evaluated for the hardness, thickness, friability, % drug content, and in-vitro drug release. Results: A study of the release of drug by in-vitro found that F8 is to be the best efficient formulation which consists of both Chitosan and Guar Gum helped in delayed the release of drug up to 24 hours and performs excellent release of drug in starting hours of drug release in the body. The drug released from the F8 formulation indicates the kinetic model of First Order, by anomalous diffusion. The formulation F8 shows optimum thickness, hardness and at 40ºC±2 99.35% drug release after 24 hours shows optimum formulation.  Conclusion: This study concludes that better drug release was observed by using natural polymers.  Doxofylline with natural polymer shows good release and better dissolution rate as compared with a single synthetic polymer. Synthetic drug with natural polymer shows more future scope and this work will help the researcher in the future.


2021 ◽  
Vol 11 (5) ◽  

The objective of this research work was to carry out design and evaluation of sustained release matrix tablets of Itopride by use of natural and synthetic polymers. Matrix tablets were prepared by wet granulation technique by using natural polymers like Carbopol 934, Tamarind poly saccharide, Locust bean gum, Ethyl cellulose, HPMC K 100 as matrix forming agent and excipients such as Lactose, Starch 1500, Magnesium stearate, MCC and talc were used. The dissolution medium consisted of 900 ml of 0.1 N HCl for first 2 hours and then 7.4 phosphate buffer for remaining 10 hours. The release of Itopride from matrix containing lactose, micro crystalline cellulose and starch 1500 as diluents. The drug release rate was found in order of lactose> micro crystalline cellulose>starch 1500. The formulation was optimized on the basis of acceptable tablet properties and in-vitro drug release. The release data were fit into different kinetic models (zero-order, first- order, Higuchi’s equation and Korsmeyer-Peppas equation). Optimized formulation was tested for their compatibility with Itopride by FT-IR studies, which revealed that there is no chemical interaction occurred with polymer and other excipients. The drug release profile of the best formulation was well controlled and uniform throughout the dissolution studies. Keywords: Matrix tablets, Itopride, Carbopol 934, HPMC K 100, Ethyl cellulose.


2016 ◽  
Vol 19 (1) ◽  
pp. 92-99
Author(s):  
Kambham Venkateswarlu

The aim of present investigation was to formulate and evaluate the sustained release matrix tablets of Repaglinide (RPGN). These matrix tablets were prepared by wet granulation method using synthetic and natural polymers like HPMC K4M, HPMC 100M and Guar gum (GG), Carrageenan (CG), respectively. Invitro drug release studies were performed by USP dissolution apparatus type-II (paddle method) using 0.1 N HCl buffer and pH 6.8 phosphate buffer for 12 h. Amongst all the 12 formulations, formulation F12 showed maximum drug release of 97.9% for 12 h study. It was observed from the kinetic studies that all the formulations followed first order kinetics and particularly the drug release from its dosage form was fickian diffusion (F9, F12), non-fickian diffusion (F1-F8, F10-F11). Formulation F12 was subjected to stability studies and confirmed that formulation F12 was stable upto the period of 1 month.Bangladesh Pharmaceutical Journal 19(1): 92-99, 2016


Author(s):  
V. Viswanath ◽  
U. Chandrasekhar ◽  
B. Narasimha Rao ◽  
K. Gnana Prakash

The objective of the present study was to develop a sustained release matrix tablets of Losartan potassium, an anti hypertensive drug. The sustained release tablets were prepared by wet granulation and formulated using different drug and polymer ratios. Hydrophilic natural polymers like xanthan Gum (XG), guar gum and cellulose were used. Compatibility of the drug with various excipients was studied. The compressed tablets were evaluated and showed compliance with Pharmacopoeial limits. Formulation was optimized (F2) on the basis of acceptable tablet properties and in vitro drug release. The resulting formulation produced matrix tablets with optimum hardness, consistent weight uniformity and friability. All tablets but one exhibited gradual and near completion sustained release for losartan potassium and 90.88% released at the end of 12h. The results of dissolution studies indicated that formulation F2 (drug to polymer 1:2) is the most successful of the study and exhibited drug release pattern very close to theoretical release profile. A decrease in release kinetics of the drug was observed on increasing polymer ratio. Applying exponential equation, all the formulation tablets (except F2) showed diffusion-dominated drug release. The mechanism of drug release from F2 was diffusion coupled with erosion.


Author(s):  
C Suja ◽  
Sismy C

The goal of this study was to formulate and evaluate norfloxacin sustained release tablets. Norfloxacin sustained release tablets were prepared by wet granulation method using two polymers such as HPMC K 100 M (hydrophilic polymer) and guar gum (natural polymer) and with three polymer ratios (0.5, 1.0 and 1.5). The prepared granules were evaluated to preformulation studies such as angle of repose, bulk density, tapped density, bulkiness, compressibility index and Hauser’s ratio. All the parameters shows that the granules having good flow properties. Then the formulated tablets were taken to evaluation studies such as hardness, weight variation, friability, drug content and thickness. All the parameters were within the acceptable limits. IR spectral analysis showed that there was no interaction between the drug and polymers. The in vitro release study was performed in phosphate buffer pH 7.4 at 293 nm. The in vitro release study showed that if the polymer ratio is increased, then the release of the drug is prolonged. HPMC K 100M shows a prolonged release when compared to guar gum.


2018 ◽  
Vol 8 (5) ◽  
pp. 465-474
Author(s):  
S PADMA PRIYA ◽  
AN Rajalakshmi ◽  
P Ilaveni

Objective: The objective of this research work is to develop and evaluate mucoadhesive microspheres of an anti-migraine drug for sustained release. Materials and Methods:  Mucoadhesive microspheres were prepared by emulsification method using Sodium alginate (SA), polyvinyl pyrrolidone (PVP) and Chitosan in the various drug-polymer ratios of 1:1, 1:2 and 1:3. Nine  formulations were formulated and  evaluated for  possible drug polymer interactions, percentage yield, micromeritic properties, particle size, drug content, drug entrapment efficiency, drug loading, swelling index, In-vitro wash off test, in vitro  drug release, surface morphology and release kinetics. Results: The results showed that no significant drug polymer interaction in FTIR studies. Among all the formulations SF3 containing sodium alginate showed 77.18% drug release in 6hrs. Conclusion: Amongst the developed mucoadhesive microspheres, SF3 formulation containing sodium alginate exhibited slow and sustained release in a controlled manner and it is a promising formulation for sustained release of Sumatriptan succinate. Keywords: Mucoadhesive microspheres, Sodium alginate, polyvinyl pyrrolidone, Chitosan, sustained release.


Author(s):  
S Shanmugam

Objective: The objective of the present study was to develop sustained release matrix tablets of levosulpiride by using natural polymers.Method: The tablets were prepared with different ratios of Chitosan, Xanthan gum and Guar gum by wet granulation technique. The solubility study of the levosulpiride was conducted to select a suitable dissolution media for in vitro drug release studies.Results: Fourier transform infrared (FTIR) study revealed no considerable changes in IR peak of levosulpiride and hence no interaction between drug and the excipients. DSC thermograms showed that no drug interaction occurred during the manufacturing process. In vitro dissolution study was carried out for all the formulation and the results compared with marketed sustained release tablet. The drug release from matrix tablets was found to decrease with increase in polymer ratio of Chitosan, Xanthan gum and Guar gum.Conclusion: Formulation LF3 exhibited almost similar drug release profile in dissolution media as that of marketed tablets. From the results of dissolution data fitted to various drug release kinetic equations, it was observed that highest correlation was found for First order, Higuchi’s and Korsmeyer equation, which indicate that the drug release occurred via diffusion mechanism.  Keywords: Levosulpiride, sustained release tablets, natural polymers, in vitro drug release studies 


Author(s):  
Nitin Gawai ◽  
Zahid Zaheer

 Objective: The present research study was undertaken to formulate mucoadhesive sustained release buccal tablets and patches of 5-fluorouracil (5-FU).Method: For the research experiment work design expert software version 10, stat-ease, Inc. has been used. A 32 full factorial design was selected for the formulation of the buccal tablet as well as buccal patches. In this research work, formulated tablets and patches using different polymers such as carbopol 974p, polyvinylpyrrolidone-K 30, sodium deoxycholate, microcrystalline cellulose, and polyvinyl alcohol. An after formulation of batches formulated products studied for characterization, namely, Fourier transform infrared (FTIR) and differential scanning calorimeter (DSC). Evaluation parameters studied such as weight uniformity, thickness, hardness, friability, and content uniformity also carried out. For drug release purpose from the formulation of buccal tablet and patches in vitro drug released performed. In vivo drug releases study also carried out using Rabbit for drug reaction point of view.Results: Design expert showed the significant results on independent and dependent variables. The R-Squared 0.9943 for drug release and 0.9985 for swelling index is in reasonable agreement with the formulations. FTIR and DSC indicating compatibility of the drug and polymers in the tablet formulation and patch formulations at the molecular level. The drug release of buccal tablet showed 75.10–99.34% and buccal patches showed 58.41–81.43%. These formulations showed good results when compared to the conventional tablet.Conclusion: Formulation of mucoadhesive sustained release buccal tablets and patches of 5-FU successfully done using different polymers, which would definitely help in increasing bioavailability of the drug.


Author(s):  
NEHA IMTIAZ ◽  
SUTAPA BISWAS MAJEE ◽  
GOPA ROY BISWAS

Objective: Oral disintegrating films consisting of hydrophilic polymer are designed to be quickly hydrated by saliva, adhere to the mucosa and disintegrate rapidly to release the drug. The aim of the present study was to prepare stable, flexible swellable rapid release oral films with hydroxypropyl methylcellulose E15 LV (HPMC) and polyvinyl alcohol (PVA) in different ratios. Guar gum was incorporated as the mucoadhesive agent. In order to achieve rapid disintegration of the film cross carmellose sodium (superdisintegrant) and surfactant like Tween 80 were added. The model drug used in the study was diclofenac sodium. Methods: Films were developed using HPMC E15 LV and PVA by solvent casting method and characterized for thickness, swelling index, disintegration time, folding endurance, drug content, and in vitro drug release pattern and kinetics. Results: The prepared swellable rapid release oral films were quite flexible and transparent with a smooth texture. The swelling index study confirmed that the films possessed the desired swelling property. Fastest disintegration was observed with the oral film containing HPMC: PVA in the ratio of 2:1, guar gum at 120 mg, 20% w/w crosscarmellose sodium and 4%w/w Tween 80. The swellable rapid release oral films were found to follow either Higuchi or Korsmeyer-Peppas model with drug release following either Fickian or non-Fickian diffusion. Maximum drug release of around 70% was observed from the above-mentioned film in 1hr in simulated salivary fluid. Conclusion: Therefore, swellable rapid release oral films with HPMC E15 LV: PVA, guar gum, croscarmellose sodium and Tween 80 demonstrated satisfactory swelling, rapid disintegration and improved drug release for oromucosal absorption.


The aim of the present study is to design and develop sustained release pellets formulations for Amlodipine besylate. Amlodipine is an oral antihypertensive agent, commonly used as calcium channel blocker for treating high blood pressure. It is frequently used to treat heart diseases like angina pectoris. The dose of Amlodipine in case of hypertension or angina initially 5 mg daily later adjusted to 10 mg daily by oral route. Amlodipine has a maximum solubility in acidic pH. Amlodipine has a high bioavailability ranging from 60 to 80 % and slow rate of elimination. Amlodipine besylate at different drug to polymer ratios were prepared by extrusion and spheronization technique. The influence of the proportion of the polymer on the release rate of the drug from the pellets was studied. The in-vitro release studies of pellets were carried out in 0.1N HCl for 12 hours. The studies indicated that the drug release can be modulated by varying the concentration of the polymer. Pellets were prepared and evaluated for loose bulk density, tapped bulk density, compressibility index and angle of repose, shows satisfactory results. Formulation was optimized on the basis of acceptable pellet properties and in-vitro drug release. The resulting formulation produced robust pellets with acceptable drug content and low friability. The release data was fitted to various mathematical models such as, Higuchi, Korsmeyer- Peppas, First-order and Zero-order to evaluate the kinetics and mechanism of the drug release. Keywords: Sustained release, Ethyl cellulose, HPMC, Pellets, Amlodipine besylate


Sign in / Sign up

Export Citation Format

Share Document