scholarly journals Formulation and Evaluation of Sustained Release Floating Pellets of Amlodipine Besylate

The aim of the present study is to design and develop sustained release pellets formulations for Amlodipine besylate. Amlodipine is an oral antihypertensive agent, commonly used as calcium channel blocker for treating high blood pressure. It is frequently used to treat heart diseases like angina pectoris. The dose of Amlodipine in case of hypertension or angina initially 5 mg daily later adjusted to 10 mg daily by oral route. Amlodipine has a maximum solubility in acidic pH. Amlodipine has a high bioavailability ranging from 60 to 80 % and slow rate of elimination. Amlodipine besylate at different drug to polymer ratios were prepared by extrusion and spheronization technique. The influence of the proportion of the polymer on the release rate of the drug from the pellets was studied. The in-vitro release studies of pellets were carried out in 0.1N HCl for 12 hours. The studies indicated that the drug release can be modulated by varying the concentration of the polymer. Pellets were prepared and evaluated for loose bulk density, tapped bulk density, compressibility index and angle of repose, shows satisfactory results. Formulation was optimized on the basis of acceptable pellet properties and in-vitro drug release. The resulting formulation produced robust pellets with acceptable drug content and low friability. The release data was fitted to various mathematical models such as, Higuchi, Korsmeyer- Peppas, First-order and Zero-order to evaluate the kinetics and mechanism of the drug release. Keywords: Sustained release, Ethyl cellulose, HPMC, Pellets, Amlodipine besylate

Author(s):  
Anusha M ◽  
S T Bhagawati ◽  
K Manjunath

Objective: The aim of the present study was design, develop and to evaluate a model of floating sustained release pellets formulations for Omeprazole by extrusion and spheronization technique. Methods: Omeprazole at different drug to polymer ratios were prepared by extrusion and spheronization technique and the release rate of the drug from the pellets was studied. Further, the in-vitro release studies of pellets were carried out in 0.1N HCL for 12 hours. Prepared pellets were subjected to characterization by different techniques such as loose bulk density, tapped bulk density, compressibility index and angle of repose. To optimize the formulation on the basis of acceptable pellet properties friability, drug content, moisture content, and loss on drying and in-vitro drug release tests were done. In addition, the compatibility studies were performed by using FTIR and DSC. Results: These above studies indicated that the drug release can be modulated by varying the concentration of the polymer. The resulting formulation produced robust pellets with acceptable drug content and low friability. Further, release data was fitted to various mathematical models such as, Higuchi, Korsmeyer-Peppas, First-order, and Zero-order to evaluate the kinetics and mechanism of the drug release. Kinetic modeling of in-vitro dissolution profiles revealed the release mechanism ranges from Quasi-Fickian transport to Anomalous (non-Fickian transport), which was only dependent on the type and amount of polymer used. The drug release of the optimized formulation (F5) follows Zero order kinetics and the mechanism was found to be diffusion controlled. The FTIR and DSC studies reveal that there is no interaction between the drug and the polymer/excipients mixture. Keywords:  Floating, Ethyl cellulose, HPMC, Pellets, Omeprazole.


Author(s):  
C Suja ◽  
Sismy C

The goal of this study was to formulate and evaluate norfloxacin sustained release tablets. Norfloxacin sustained release tablets were prepared by wet granulation method using two polymers such as HPMC K 100 M (hydrophilic polymer) and guar gum (natural polymer) and with three polymer ratios (0.5, 1.0 and 1.5). The prepared granules were evaluated to preformulation studies such as angle of repose, bulk density, tapped density, bulkiness, compressibility index and Hauser’s ratio. All the parameters shows that the granules having good flow properties. Then the formulated tablets were taken to evaluation studies such as hardness, weight variation, friability, drug content and thickness. All the parameters were within the acceptable limits. IR spectral analysis showed that there was no interaction between the drug and polymers. The in vitro release study was performed in phosphate buffer pH 7.4 at 293 nm. The in vitro release study showed that if the polymer ratio is increased, then the release of the drug is prolonged. HPMC K 100M shows a prolonged release when compared to guar gum.


2020 ◽  
pp. 1-9
Author(s):  
Yunhong Wang ◽  
Rong Hu ◽  
Yanlei Guo ◽  
Weihan Qin ◽  
Xiaomei Zhang ◽  
...  

OBJECTIVE: In this study we explore the method to prepare tanshinone self-microemulsifying sustained-release microcapsules using tanshinone self-microemulsion as the core material, and chitosan and alginate as capsule materials. METHODS: The optimal preparation technology of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules was determined by using the orthogonal design experiment and single-factor analysis. The drug loading and entrapment rate were used as evaluation indexes to assess the quality of the drug, and the in vitro release rate was used to evaluate the drug release performance. RESULTS: The best technology of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules is as follows: the concentration of alginate is 1.5%, the ratio of tanshinone self-microemulsion volume to alginate volume to chitosan mass is 1:1:0.5 (ml: ml: g), and the best concentration of calcium chloride is 2.0%. To prepare the microcapsules using this technology, the drug loading will be 0.046%, the entrapment rate will be 80.23%, and the 24-hour in vitro cumulative release rate will be 97.4%. CONCLUSION: The release of the microcapsules conforms to the Higuchi equation and the first-order drug release model and has a good sustained-release performance.


Author(s):  
Mayuri B. Patil ◽  
Avish D. Maru ◽  
Jayshree S. Bhadane

The aim of the present study was to design and evaluate bilayer tablets of metformin hydrochloride as sustained release form for the treatment of Type-II diabetes mellitus. The basic aim of any Bi-layer tablet formulation is to separate physically or chemically incompatible ingredients and to produce repeat action or prolonged action of tablet. They are many drugs for treating type-II diabetes. Sulphonyl urea and biguanides are used commonly by a wide section of patients. Melt granulation process was used for the formulation of sustained comprising metformin layer and wet granulation of immediate comprising layer of glimepiride. The precompression studies like bulk density, tapped density, angle of repose, compressible index and post formulation studies includes weight variation, hardness, thickness, friability and dissolution study. The in-vitro release profile of Glimepiride was dissolved within 45 min, and Metformin Hydrochloride was able to release more than 12 hrs. They all the formulation was optimized formula due to its higher rate of dissolution and collate all other parameters with the official specifications.


1970 ◽  
Vol 8 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Mohammad Nezab Uddin ◽  
Ishtiaq Ahmed ◽  
Monzurul Amin Roni ◽  
Muhammad Rashedul Islam ◽  
Mohammad Habibur Rahman ◽  
...  

The objective of this study was to design oral sustained release matrix tablets of Ranolazine usinghydroxypropyl methylcellulose (HPMC) as the retardant polymer and to study the effect of formulation factors suchas polymer proportion and polymer viscosity on the release of drug. In vitro release studies were performed usingUSP type II apparatus (paddle method) in 900 mL of 0.1N HCl at 100 rpm for 12 hours. The release kinetics wasanalyzed using the zero-order, first order, Higuchi and Korsmeyer-Peppas equations to explore and explain themechanism of drug release from the matrix tablets. In vitro release studies revealed that the release rate decreasedwith increase in polymer proportion and viscosity grade. Mathematical analysis of the release kinetics indicated thatthe nature of drug release from the matrix tablets was dependent on drug diffusion and polymer relaxation andtherefore followed non-Fickian or anomalous release. The developed controlled release matrix tablets of Ranolazineprepared with high viscosity HPMC extended release up to 12 hours.Key words: Ranolazine; Sustained release; Methocel E50 Premium LV; Methocel K100LV CR; Methocel K4M CR;Methocel K15M CR.DOI: 10.3329/dujps.v8i1.5333Dhaka Univ. J. Pharm. Sci. 8(1): 31-38, 2009 (June)


2021 ◽  
Vol 14 (1) ◽  
pp. 41-48
Author(s):  
Larisa Cimpoaie ◽  
◽  
Luca Liviu Rus ◽  
Rareș Iuliu Iovanov ◽  
◽  
...  

Objectives. The aim of this study was to investigate the influence of formulation factors on in vitro release of ketoprofen from sustained release inert matrix tablets. Materials and methods. Laboratory scale, Ketoprofen sustained release inert matrix tablets were manufactured using Kollidon® SR as matrix formator, by direct tableting of powder blends. The influence of the formulation factors (X1 – matrix formator excipient and X2 – diluent type) on in vitro release of ketoprofen from sustained release tablets was studied by using a full factorial 23 experimental plan. Outcomes. Pharmacotechnical characterization of manufactured laboratory scale batches was performed and all 12 batches fulfilled European Pharmacopeia requests. In vitro release showed a sustained release profile in all cases. Variance analysis (ANOVA) showed a good correlation between experimental conditions and answers. In vitro release testing was performed in phosphate buffer pH = 7.4. Percentage release was determined spectrophotometrically at 258 nm. A decrease in the rate of in vitro release was registered, up to 4 h and 6 h when lactose DC and mannitol DC were used as diluents, respectively. Isomalt DC has increased the rate of in vitro release up to 6 h. Conclusions. In vitro release data, corresponding to formulation N1 shoed a good fitting with Weitbull, Korshmeyer-Peppas and Higuchi models while in vitro release data corresponding to formulation N8 presented a good fitting with Weitbull and Korsmeyer-Peppas. In case of formulations N1 and N8 a non-Fickian diff usion mechanism seems to be involved in drug release from the matrix tablets.


Author(s):  
Pearl Pires Dighe ◽  
Tank Hm

 Objective: The current study involves the fabrication of oral bilayer matrix designs of a combination of two drugs, metoprolol succinate and atorvastatin calcium, the optimization of their in vitro release and characterization using the design expert software. Metoprolol succinate, a β1- selective adrenergic receptor blocking agent, is used in the management of hypertension has a half-life of approximately 4–5 h; thus, there is the need to use extended-release formulation for prolonged action. Atorvastatin is a hydroxymethylglutaryl-coenzyme A reductase inhibitor, an antilipidemic, used to lower blood cholesterol. The rationale for this fixed-dose combination is to coadminister two drugs acting by different mechanisms of action together, reduce dosing frequency, and increase patient compliance.Methods: A 32 factorial design was selected to analyze the effect of critical factors, polymer concentration of Kollidon sustained release (SR), and Eudragit RS and their interaction on the in vitro release of the SR part containing metoprolol succinate. The drug release at 2 h (Q2), 8 h (Q8), and 20 h (Q20) was taken as responses. The blends of both layers were prepared, evaluated for precompression characteristics, and compressed by direct compression. The compressed bilayer tablets were evaluated for their hardness, weight variation, friability, content uniformity, diameter, and in vitro release.Result and Conclusion: The release profile indicates Higuchi’s kinetics. Contour and surface response plots show significant interaction among the formulation variables. Formulation MS06 containing 70 mg Kollidon SR and 10 mg Eurdragit RS was found to be the optimized formulation, controlling the drug release for a 24 h period.


2003 ◽  
Vol 71 (4) ◽  
pp. 357-364
Author(s):  
Sevgi Gūngör ◽  
Mine Orlu ◽  
Yildiz Özsoy ◽  
Ahmet Araman

The objective of this study was to evaluate the performance of Sucro Ester 7 (sucrose distearate) as additive for preparing sustained release suppositories of tiaprofenic acid. Suppocire AIM (semi-synthetic glycerides) was used as suppository base and formulations were prepared containing different ratios of sugar ester: Suppocire AIM. Content uniformity, disintegration time and in vitro release characteristics of suppositories were investigated. Significant decrease in the extent of drug release was observed with the increase in the content of sugar ester, which was due to the longer disintegration time of suppositories.


Author(s):  
Radha Rani Earle ◽  
Kiran Kumar Bandaru ◽  
Lakshmi Usha A

Objective: Metformin hydrochloride is a biguanide antihyperglycemic agent which is a generally recommended first-line drug for the treatment of diabetes mellitus (Type II). The purpose of this investigation is to prepare sustained release matrix granules of metformin hydrochloride which are coated to extend the drug release over a longer time period.Methods: Metformin hydrochloride granules were prepared by mixing all the dry powders in a V-cone blender and wetting the powder mix with aqueous solution of hydroxypropyl methyl cellulose K100. The prepared granules (MG1-MG5) were investigated for drug release. The batch of granules which exhibited extended release for up to 4 h was coated in a standard coating pan with blends of Eudragit RS and RL to further enhance release period. These were marked as coated metformin granules (CMG3) and CMG4 which were later filled into empty capsules. The granules were characterized for micromeritic properties, percentage yield, particle size distribution, percentage of drug content, and in vitro release of the drug.Results: All the formulations showed percentage yield in the range of 77.66–82.86% and drug content in the range of 78.23–96.62%. CMG3 showed drug release of 97.02% for 12 h. Fourier-transform infrared spectroscopy and differential scanning calorimetry studies indicated that no possible interaction existed between the drug and the polymers used. Scanning electron microscopy images revealed that the granules were spherical in shape with smooth surface and completely covered with a coating of polymer. Kinetic analysis of drug release confirmed that drug release followed zero-order kinetics where it is independent of the concentration.Conclusion: From the results, it was analyzed that design of coated granules employing the polymers used in the present work can produce a sustained release of the drug over a period of 12 h.


Author(s):  
EMAN A. MAZYED ◽  
SHERIN ZAKARIA

Objective: The present investigation aims to formulate and evaluate proniosomes of clopidogrel bisulphate for improving its dissolution characteristics. Methods: The slurry method was used for the preparation of proniosomes of clopidogrel using cholesterol, sorbitan monostearate (Span 60) and maltodextrin as a carrier. Clopidogrel proniosomes were evaluated for their entrapment efficiency and in vitro drug release. The best formula (F1) that achieved maximum drug release was further evaluated by measurement of the angle of repose, morphological examination, determination of vesicle size, determination of zeta potential, Fourier transform infrared spectroscopy and differential thermal analysis. The in vivo behavior of the selected proniosomal formula (F1) was studied by measuring the antiplatelet activity in adult male mice. Results: The entrapment efficiency of clopidogrel proniosomes was in the range of 83.04±1.99 to 90.14±0.30. % drug released from proniosomal formulations was in the range of 79.73±0.35 to 97.70±1.10 % within 4 h. Clopidogrel proniosomes significantly enhanced the in vitro release of clopidogrel compared with the plain drug that achieved 61.77±2.22 % drug release. F1 significantly (p ≤ 0.001) increased the bleeding time and bleeding volume and significantly (p ≤ 0.05) prolonged prothrombin time and decreased prothrombin activity and increased the international normalized ratio (INR) compared to plain clopidogrel. Conclusion: The present investigation introduced proniosomes as a promising carrier for clopidogrel that could enhance its dissolution and pharmacological effect.


Sign in / Sign up

Export Citation Format

Share Document