scholarly journals Forty years later: monitoring and status of the endangered Coachella Valley fringe-toed lizard

2021 ◽  
pp. 243-257
Author(s):  
Cameron W. Barrows ◽  
Scott A. Heacox

The Coachella Valley fringe-toed lizard, Uma inornata, was listed as endangered under the California Endangered Species Act in 1980. By that time, the lizard’s habitat was already reduced by 90%, fragmented into isolated habitat islands on private property among hundreds of landowners. Ecosystem processes that are essential for delivering sand and maintaining the lizard’s sand dune habitat were already compromised. As challenging as it was to protect its habitat under these conditions, populations of this lizard still occur across much of the area where it was found forty years ago. Annual monitoring was designed to assess the ongoing viability of these populations by quantifying the effects of potential threats and stressors and focusing adaptive management actions where they are most needed. Here we demonstrate how hypothesis-based monitoring identified specific locations where invasive plant control and sand corridor management were needed to maintain the lizard’s populations. By monitoring lizard densities within the context of environmental variables that either drive or inhibit population growth, this monitoring approach informs if, when, and where management actions are needed.

2009 ◽  
Vol 31 (3) ◽  
pp. 329 ◽  
Author(s):  
Tom Lewis ◽  
Peter J. Clarke ◽  
Ralph D. B. Whalley ◽  
Nick Reid

An assessment of the relative influences of management and environment on the composition of floodplain grasslands of north-western New South Wales was made using a regional vegetation survey sampling a range of land tenures (e.g. private property, travelling stock routes and nature reserves). A total of 364 taxa belonging to 55 different plant families was recorded. Partitioning of variance with redundancy analysis determined that environmental variables accounted for a greater proportion (61.3%) of the explained variance in species composition than disturbance-related variables (37.6%). Soil type (and fertility), sampling time and rainfall had a strong influence on species composition and there were also east–west variations in composition across the region. Of the disturbance-related variables, cultivation, stocking rate and flooding frequency were all influential. Total, native, forb, shrub and subshrub richness were positively correlated with increasing time since cultivation. Flood frequency was positively correlated with graminoid species richness and was negatively correlated with total and forb species richness. Site species richness was also influenced by environmental variables (e.g. soil type and rainfall). Despite the resilience of these grasslands, some forms of severe disturbance (e.g. several years of cultivation) can result in removal of some dominant perennial grasses (e.g. Astrebla spp.) and an increase in disturbance specialists. A simple heuristic transitional model is proposed that has conceptual thresholds for plant biodiversity status. This knowledge representation may be used to assist in the management of these grasslands by defining four broad levels of community richness and the drivers that change this status.


2018 ◽  
Vol 62 (6) ◽  
pp. 1150-1167 ◽  
Author(s):  
Elana Mostert ◽  
Mirijam Gaertner ◽  
Patricia M. Holmes ◽  
Patrick J. O’Farrell ◽  
David M. Richardson

2021 ◽  
Author(s):  
Desmond Ofosu Anim ◽  
Patrick Banahene

Catchment urbanization is widely recognised as a primary driver of stream degradation by increasing stormwater runoff causing major changes to key ecosystem processes. Reinstating the ‘natural’ hydrogeomorphic conditions is central in designing successful, self-sustaining restoration actions. However, addressing urban stream degradation by re-establishing the hydrogeomorphic conditions remains a challenge and comparatively limited measurable progress has been observed particularly achieving ecological objectives. This paper articulates that stream restoration goals might be better achieved when management measures take a broader approach that considers anticipated hydraulic conditions effects that liaise relationships between flow and ecology. The study argues that fluvial systems are characterised by complex and dynamic ecosystem processes primarily governed by the hydraulic conditions (e.g. velocity, depth, shear stress), thus, as the practice of addressing urban stream restoration becomes increasingly common, it is critical to explore and understand the anticipated response of the hydraulic conditions. This paper describes how hydraulic regime consideration provides further opportunity for a holistic approach to urban stream management given their capacity to account for multiple ecological and geomorphic objectives. The paper suggests that developing suitable flow-biota-ecosystem processes nexus is critical towards addressing urban stream degradation and hydraulic consideration in restoration actions provide an important step towards that. The paper discusses opportunities to evolve management actions to achieve restoration goals by highlighting how the management of the two key levers (addressing altered flow regime and morphology) to improve the hydraulic conditions can help to address the urban stream disturbance.


<strong><em>Abstract. </em></strong>We review the impacts of towed gears on benthic habitats and communities and predict the consequences of these impacts for ecosystem processes. Our emphasis is on the additive and synergistic large-scale effects of fishing, and we assess how changes in the distribution of fishing activity following management action are likely to affect production, turnover time, and nutrient fluxes in ecosystems. Analyses of the large-scale effects of fishing disturbance show that the initial effects of fishing on a habitat have greater ecosystem consequences than repeated fishing in fished areas. As a result, patchy fishing effort distributions have lower total impacts on the ecosystem than random or uniform effort distributions. In most fisheries, the distribution of annual fishing effort within habitats is more patchy than random, and patterns of effort are maintained from year to year. Our analyses suggest that many vulnerable species and habitats have only persisted in heavily fished ecosystems because effort is patchy. Ecosystem-based fisheries management involves taking account of the ecosystem effects of fishing when setting management objectives. One step that can be taken toward ecosystem-based fisheries management is to make an a priori assessment of the ecosystem effects of proposed management actions such as catch controls, effort controls, and technical measures. We suggest a process for predicting the ecosystem consequences of management action. This requires information on habitat distributions, models to predict changes in the spatial distribution of fleets following management action, and models of the impacts of trawling disturbance on ecosystem processes. For each proposed management action, the change in disturbance affecting different habitat types would be predicted and used to forecast the consequences for the ecosystem. These simulations would be used to produce a decision table, quantifying the consequences of alternative management actions. Actions that minimize the ecosystem effects of fishing could then be identified. In data-poor situations, we suggest that management strategies that maintain or maximize the patchiness of effort within habitat types are more consistent with the precautionary approach than those that lead to more uniform fishing effort distributions.


Author(s):  
Christopher N. Kaiser-Bunbury ◽  
◽  
Benno I. Simmons ◽  
◽  

Invasive plant species degrade and homogenize ecosystems worldwide, thereby altering ecosystem processes and function. To mitigate and reverse the impact of invasive plants on pollination, a key ecosystem function, conservation scientists and practitioners restore ecological communities and study the impact of such management interventions on plant-pollinator communities. Here, we describe opportunities and challenges associated with restoring pollination interactions as part of a holistic ecosystem-based restoration approach. We introduce a few general concepts in restoration ecology, and outline best planning and evaluation practices of restoring pollination interactions on the community level. Planning involves the selection of suitable plant species to support diverse pollinator communities, which includes considerations of the benefits and disadvantages of using native vs exotic, and bridge and framework plant species for restoration. We emphasize the central role of scientific- and community-level approaches for the planning phase of pollination restoration. For evaluation purposes, we argue that appropriate network indicators have the advantage of detecting changes in species behaviour with consequences for ecosystem processes and functions before these changes show up in altered species communities. Suitable network metrics may include interaction diversity and evenness, and network measures that describe the distribution of species, such as network and species-level specialization, modularity and motifs. Finally, we discuss the usefulness of the network approach in evaluating the benefits of restoration interventions for pollination interactions, and propose that applied network ecologists take a central role in transferring theory into practice.


2020 ◽  
Author(s):  
Stuart A. Hall ◽  
Rita Bastos ◽  
Joana Vicente ◽  
Ana Sofia Vaz ◽  
João P. Honrado ◽  
...  

2013 ◽  
Vol 54 ◽  
pp. 218-226 ◽  
Author(s):  
Josu G. Alday ◽  
Emma S. Cox ◽  
Robin J. Pakeman ◽  
Mike P.K. Harris ◽  
Mike G. Le Duc ◽  
...  
Keyword(s):  

2021 ◽  
pp. 14-24
Author(s):  
Maria Georgieva

The peculiarities of the formation of new organizational and production structures of the agricultural sector of the Bulgarian economy in terms of integration into the European Union are considered. One of the conditions for ensuring the competitiveness of Bulgarian agriculture was the creation of a significant number of farms of various organizational and legal forms. Peculiarities of creation and functioning of private agricultural enterprises against the background of privatization of former labor cooperatives and state farms with observance of a clearly regulated legislative procedure are studied. The peculiarities of creating private agricultural farms in two forms are generalized: private households and large agro-firms. Of course, there were some difficulties with the privatization of agricultural machinery, equipment, technical and farm buildings. Also, difficulties arose with the management of agricultural commodity production due to the long absence of a tradition of private property in agriculture. It is proved that one of the features of the formation of new organizational and production structures was their creation on the basis of decolectivization and privatization. The main task of this process was to create an efficient and competitive environment for the development of the agricultural sector. The basis of agricultural management in Bulgaria in the period 1996-2007 were private agricultural enterprises, which were more efficient in their activities than other organizational and legal forms of management. However, the imperfection of the management system of the agricultural sector did not allow to accelerate the process of productivity of the industry, to attract the latest scientific advances and more efficient use of logistics. In the pre-integration period, no program of management actions for the functioning of agricultural enterprises was developed, which did not contribute to the growth of their financial and economic indicators and the competitiveness of these farms.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2141 ◽  
Author(s):  
John M. Boland

The Tijuana River Valley is the first natural habitat in California to be substantially invaded by the Kuroshio Shot Hole Borer (KSHB,Euwallaceasp.), an ambrosia beetle native to Southeast Asia. This paper documents the distribution of the KSHB in the riparian vegetation in the valley and assesses the damage done to the vegetation as of early 2016, approximately six months after the beetle was first observed in the valley. I divided the riparian habitats into 29 survey units so that the vegetation within each unit was relatively homogenous in terms of plant species composition, age and density. From a random point within each unit, I examined approximately 60 individuals of the dominant plant species for evidence of KSHB infestation and evidence of major damage such as limb breakage. In the 22 forested units,I examined the dominant arroyo and black willows (Salix lasiolepisBenth. andS. gooddingiiC.R. Ball), and in the seven scrub units, I examined mule fat (Baccharis salicifolia(Ruiz & Pav.) Pers.). Evidence of KSHB infestation was found in 25 of the 29 units. In the forest units, infestation rates ranged from 0 to 100% and were high (>60%) in 16 of the units. In the scrub units, infestation rates ranged from 0 to 33%. Infestation rates were significantly correlated with the wetness of a unit; wetter units had higher infestation rates. Evidence of major physical damage was found in 24 units, and dense stands of willows were reduced to broken trunks in several areas. Overall, I estimated that more than 280,000 (70%) of the willows in the valley were infested, and more than 140,000 had suffered major limb damage. In addition, I recorded evidence of KSHB infestation in the other common plant species in the valley; of the 23 species examined, 14 showed evidence of beetle attack. The four species with the highest rates of infestation were native trees in the Salicaceae family. The three species considered to be the worst invasive plants in the valley,Ricinus communisL., Tamarix ramosissimaLedeb. andArundo donaxL., had low rates of infestation. Several findings from this study have significance for resource managers: (1) the KSHB attack caused extensive mortality of trees soon after being first discovered so, if managers are to control the spread of the beetle, they will need to develop an effective early detection and rapid response program; (2) infestation rates were highest in units that were wet, so resource managers trying to detect the beetle in other areas should thoroughly search trees near water, particularly nutrient-enriched water; (3) the infestation appears to be a novel form of disturbance, and the affected forests may need special management actions in order to recover; and (4) the infestation has altered the structure of the forest canopy, and this is likely to promote the growth of invasive plant species that were relatively inconspicuous in the forests prior to the beetle attack but will now need more attention.


Sign in / Sign up

Export Citation Format

Share Document