scholarly journals A SURVEY OF ARTIFICIAL INTELLIGENCE METHODS IN INTRUSION DETECTION TASKS

InterConf ◽  
2021 ◽  
pp. 443-449
Author(s):  
Oleksandr Shmatko ◽  
German Zviertsev

There are many methods for detecting network attacks, but since attacks are constantly changing, special databases of rules or signatures to detect attacks require continuous administration, it becomes necessary to add new rules. One of the ways to eliminate this problem is to use neural networks as a mechanism to detect network attacks. In contrast to the signature-based approach, the neural network analyzes information and provides information about the attacks that it is trained to recognize. In addition, neural networks have the advantage of being able to adapt to previously unknown attacks and detect them. That is why the development of software based on neural networks is relevant.

The objective of this undertaking is to apply neural systems to phishing email recognition and assess the adequacy of this methodology. We structure the list of capabilities, process the phishing dataset, and execute the Neural Network frameworks. we analyze its exhibition against that of other real Artificial Intelligence Techniques – DT , K-nearest , NB and SVM machine.. The equivalent dataset and list of capabilities are utilized in the correlation. From the factual examination, we infer that Neural Networks with a proper number of concealed units can accomplish acceptable precision notwithstanding when the preparation models are rare. Additionally, our element determination is compelling in catching the qualities of phishing messages, as most AI calculations can yield sensible outcomes with it.


10.14311/1121 ◽  
2009 ◽  
Vol 49 (2) ◽  
Author(s):  
M. Chvalina

This article analyses the existing possibilities for using Standard Statistical Methods and Artificial Intelligence Methods for a short-term forecast and simulation of demand in the field of telecommunications. The most widespread methods are based on Time Series Analysis. Nowadays, approaches based on Artificial Intelligence Methods, including Neural Networks, are booming. Separate approaches will be used in the study of Demand Modelling in Telecommunications, and the results of these models will be compared with actual guaranteed values. Then we will examine the quality of Neural Network models. 


In this paper, we propose a method to utilize machine learning to automate the system of classifying and transporting large quantities of logistics. First, establish an environment similar to the task of transferring logistics to the desired destination, and set up basic rules for classification and transfer. Next, each of the logistics that need sorting and transportation is defined as one entity, and artificial intelligence is introduced so that each individual can go to an optimal route without collision between the objects to the destination. Artificial intelligence technology uses artificial neural networks and uses genetic algorithms to learn neural networks. The artificial neural network is generated by each chromosome, and it is evolved based on the most suitable artificial neural network, and a score is given to each operation to evaluate the fitness of the neural network. In conclusion, the validity of this algorithm is evaluated through the simulation of the implemented system.


Author(s):  
Siranush Sargsyan ◽  
Anna Hovakimyan

The study and application of neural networks is one of the main areas in the field of artificial intelligence. The effectiveness of the neural network depends significantly on both its architecture and the structure of the training set. This paper proposes a probabilistic approach to evaluate the effectiveness of the neural network if the images intersect in the receptor field. A theorem and its corollaries are proved, which are consistent with the results obtained by a different path for a perceptron-type neural network.


2021 ◽  
Vol 41 (3) ◽  
pp. e87737
Author(s):  
Alcineide Pessoa ◽  
Gean Sousa ◽  
Luiz Maués ◽  
Felipe Alvarenga ◽  
Débora Santos

The execution of public sector construction projects often requires the use of financial resources not foreseen during the tendering phase, which causes management problems. This study aims to present a computational model based on artificial intelligence, specifically on artificial neural networks, capable of forecasting the execution cost of construction projects for Brazilian educational public buildings. The database used in the training and testing of the neural model was obtained from the online system of the Ministry of Education. The neural network used was a multilayer perceptron as a backpropagation algorithm optimized through the gradient descent method. To evaluate the obtained results, the mean absolute percentage errors and the Pearson correlation coefficients were calculated. Some hypothesis tests were also carried out in order to verify the existence of significant differences between real values and those obtained by the neural network. The average percentage errors between predicted and actual values varied between 5% and 9%, and the correlation values reached 0,99. The results demonstrated that it is possible to use artificial intelligence as an auxiliary mechanism to plan construction projects, especially in the public sector.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012043
Author(s):  
R Gurunath ◽  
Debabrata Samanta

Abstract Deep Steganography is a data concealment technology that uses artificial intelligence (AI) to automate the process of hiding and extracting information through layers of training. It enables for the automated generation of a cover depending on the concealed message. Previously, the technique depended on the existing cover to hide data, which limited the number of Steganographic characteristics available. Artificial intelligence and deep learning techniques have been used to steganography recently and the results are satisfactory. Although neural networks have demonstrated their ability to imitate human talents, it is still too early to draw comparisons between people and them. To improve their capabilities, neural networks are being employed in a number of disciplines, including steganography. Recurrent Neural Networks (RNN) is a widely used technology that automatically creates Stego-text regardless of payload volume. The features are extracted using a convolution neural network (CNN) based on the image. Perceptron, Multi-Layer Perceptron (MLP), Feed Forward Neural Network, Long Short Term Memory (LSTM) networks, and others are examples of this. In this research, we looked at all of the neural network approaches for Steganographic purposes in depth. This article also discusses the problems that each technology faces, as well as potential solutions.


2019 ◽  
Vol 11 (1) ◽  
pp. 145-148
Author(s):  
Zsolt Barnabás Neurohr ◽  
Edit Tóthné Laufer

Abstract Artificial intelligence is one of the most dynamically developing areas of science today. Although it is not yet an integral part of our lives to use artificial intelligence solutions, it can be seen in terms of development, that it will become available to everyone in the coming decades, and not be exclusive for the richest. An important part of artificial intelligence research are the so-called soft calculation methods, the most important of which are fuzzy logic, genetic algorithms and neural networks. In this article, the authors present a method of identifying certain traffic signs with the help of the neural network.


2021 ◽  
Author(s):  
Kanimozhi V ◽  
T. Prem Jacob

Abstract Although there exist various strategies for IoT Intrusion Detection, this research article sheds light on the aspect of how the application of top 10 Artificial Intelligence - Deep Learning Models can be useful for both supervised and unsupervised learning related to the IoT network traffic data. It pictures the detailed comparative analysis for IoT Anomaly Detection on sensible IoT gadgets that are instrumental in detecting IoT anomalies by the usage of the latest dataset IoT-23. Many strategies are being developed for securing the IoT networks, but still, development can be mandated. IoT security can be improved by the usage of various deep learning methods. This exploration has examined the top 10 deep-learning techniques, as the realistic IoT-23 dataset for improving the security execution of IoT network traffic. We built up various neural network models for identifying 5 kinds of IoT attack classes such as Mirai, Denial of Service (DoS), Scan, Man in the Middle attack (MITM-ARP), and Normal records. These attacks can be detected by using a "softmax" function of multiclass classification in deep-learning neural network models. This research was implemented in the Anaconda3 environment with different packages such as Pandas, NumPy, Scipy, Scikit-learn, TensorFlow 2.2, Matplotlib, and Seaborn. The utilization of AI-deep learning models embraced various domains like healthcare, banking and finance, findings and scientific researches, and the business organizations along with the concepts like the Internet of Things. We found that the top 10 deep-learning models are capable of increasing the accuracy; minimize the loss functions and the execution time for building that specific model. It contributes a major significance to IoT anomaly detection by using emerging technologies Artificial Intelligence and Deep Learning Neural Networks. Hence the alleviation of assaults that happen on an IoT organization will be effective. Among the top 10 neural networks, Convolutional neural networks, Multilayer perceptron, and Generative Adversarial Networks (GANs) output the highest accuracy scores of 0.996317, 0.996157, and 0.995829 with minimized loss function and less time pertain to the execution. This article added to completely grasp the quirks of irregularity identification of IoT anomalies. Henceforth, this research analysis depicts the implementations of the Top 10 AI-deep learning models, which come in handy that assist you to perceive different neural network models and IoT anomaly detection better.


2011 ◽  
Vol 403-408 ◽  
pp. 4703-4710
Author(s):  
Rashid Ali ◽  
Supriya Kamthania

Intrusion detection is the task of detecting, preventing and possibly reacting to the attacks and intrusions in a network based computer system. The neural network algorithms are popular for their ability to ’learn’ the so called patterns in a given environment. This feature can be used for intrusion detection, where the neural network can be trained to detect intrusions by recognizing patterns of an intrusion. In this work, we propose and compare the three different Relevant Features Hybrid Neural Networks based intrusion detection systems, where in, we first recognize the most relevant features for a connection record from a benchmark dataset and use these features in training the hybrid neural networks for intrusion detection. Performance of these three systems are evaluated on a well structured KDD CUP 99 dataset using a number of evaluation parameters such as classification rate, false positive rate, false negative rate etc.


2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


Sign in / Sign up

Export Citation Format

Share Document