scholarly journals EXPERIMENTAL STUDY OF SELF-CURING CONCRETE

2020 ◽  
Vol 2 (1) ◽  
pp. 1-19
Author(s):  
Xiao Yuan ◽  
Xiao Peng ◽  
Liu Yi ◽  
Xiao Yong

The study aim was to make comparison between self-curing and traditional concrete qualities in terms of hardiness and water absorption. The study was experimental in nature and made use of material including Portland Pozzolana cement, fine aggregate, and angular coarse aggregate. The three grades of concrete were used in the experiment including M10, M20, and M30 based on cube and cylinder format. The tests involved in the study included non-destructive test, compression and split tensile strength test, and water absorption test. The findings show that overall, self-curing concrete shows better performance compare to the sprinkler or fully cured concrete. Thus, the study makes recommendation that traditional concrete may be replaced with the self-curing concrete.

2021 ◽  
Vol 14 (2) ◽  
pp. 30
Author(s):  
Armin Naibaho ◽  
Agus Sugiarto ◽  
Purnama Dewi

Abstract The use of the mountain seal used as a building block for concrete should be considered, based on current usage apart from being a light construction material for housing, mountain materials from these two places are used as the main aggregate material for building construction, water structures (dams), roads. and bridges located in the surrounding Malang-Kota Batu area To determine the size of the aggregate, the coarse aggregate is sieved using a vibrating sieve, while the fine aggregate is sieved by a hydraulic sieve. In the screening process, about 70% of the filtered must pass so that high efficiency and capacity can be achieved. The compressive strength test results obtained the average compressive strength value at 28 days of concrete for concrete with fine aggregate sand zone III and coarse aggregate (gravel) in the Batu City area is equivalent to 35.65 MPa. The results of the split tensile strength test showed that the average split strength value at the age of 28 days for concrete with fine aggregate sand zone III and coarse aggregate (gravel) in the Kota Batu area is equivalent to 2.51 MPa. The compressive strength value for normal concrete is 35.65 MPa, it should produce split tensile strength = 4.179 MPa according to the provisions of SNI T-15-1991-03 Article 3.2.5 (fr = 0.70√fc '). Even though the split tensile strength value obtained in the laboratory is only 2.51 MPa, this means that the quality of materials (sand and broken stone) from Batu City is not suitable for use as building materials. Because the number 2.51 MPa is relatively much smaller than the value of 4.179 MPa, it is only one of the factors outlined in the SNI T-15-1991-03 article 3.2.5. Keywords: Mountain Material, Concrete, Concrete Compressive Strength Test, Concrete Tensile Strength Test


2020 ◽  
Vol 14 (2) ◽  
pp. 30
Author(s):  
Armin Naibaho ◽  
Agus Sugiarto ◽  
Purnama Dewi

Abstract The use of the mountain seal used as a building block for concrete should be considered, based on current usage apart from being a light construction material for housing, mountain materials from these two places are used as the main aggregate material for building construction, water structures (dams), roads. and bridges located in the surrounding Malang-Kota Batu area To determine the size of the aggregate, the coarse aggregate is sieved using a vibrating sieve, while the fine aggregate is sieved by a hydraulic sieve. In the screening process, about 70% of the filtered must pass so that high efficiency and capacity can be achieved. The compressive strength test results obtained the average compressive strength value at 28 days of concrete for concrete with fine aggregate sand zone III and coarse aggregate (gravel) in the Batu City area is equivalent to 35.65 MPa. The results of the split tensile strength test showed that the average split strength value at the age of 28 days for concrete with fine aggregate sand zone III and coarse aggregate (gravel) in the Kota Batu area is equivalent to 2.51 MPa. The compressive strength value for normal concrete is 35.65 MPa, it should produce split tensile strength = 4.179 MPa according to the provisions of SNI T-15-1991-03 Article 3.2.5 (fr = 0.70√fc '). Even though the split tensile strength value obtained in the laboratory is only 2.51 MPa, this means that the quality of materials (sand and broken stone) from Batu City is not suitable for use as building materials. Because the number 2.51 MPa is relatively much smaller than the value of 4.179 MPa, it is only one of the factors outlined in the SNI T-15-1991-03 article 3.2.5. Keywords: Mountain Material, Concrete, Concrete Compressive Strength Test, Concrete Tensile Strength Test


Author(s):  
Suwardi Suwardi ◽  
Nur Hidayati

<p>Bioplastics are organic plastics which one of their functions can be used as food packaging. Bioplastics are known to be environmentally friendly because they are easily degraded by nature. Chitosan can be modified with onggok palm starch in making bioplastics to increase the strength of the bioplastics. The addition of turmeric to the chitosan-onggok bioplastic is expected to increase resistance to microbes so that the bioplastic can be used as a food packaging material. This study aims to determine the bioplastic characteristics of chitosan-onggok palm sugar added with turmeric with a variation of 0.3-1.2%. Physical tests carried out include water absorption test, tensile strength test, elongicity test and biodegradation test. The increase in the amount of turmeric in water increases its water absorption, tensile strength and biodegradation properties, while the decrease in plastic elongation decreases with the increase in the amount of turmeric in the plastic.</p>


2021 ◽  
Vol 2 (2) ◽  
pp. 2474-2489
Author(s):  
Thyago Lima Souza ◽  
Adriano Lopes Gualberto Filho ◽  
Deividy Kaik de Lima Araujo ◽  
Marcos André Lira Silva ◽  
Marco Antônio Assis De Oliveira ◽  
...  

The study of the use of kaolin waste has scientific and socio-environmental value by providing an appropriate destination, reducing the demand and consequent problems arising from its extraction, considering that the construction industry is a consumer of a significant amount of raw material. Thus, the study aims to replace the fine aggregate by kaolin waste in the proportions of 10%, 20% and 30%, verifying its feasibility for interlocking sidewalk pieces. The kaolin waste was used with and without fine material, and physical characterization tests of the materials were performed, and then the concrete pieces were subjected to tests of resistance to simple compression, water absorption and resistance to abrasion, as prescribed by ABNT NBR 9781:2013, and flexural tensile strength test, according to ABNT NBR 12142:2010. According to the results and analyzing the compressive strength at 28 days, the mixtures with replacement of 10% of fine aggregate by kaolin waste reached strengths greater than 35 MPa, an acceptable normative parameter, both for the waste with fines and without fines, making its use feasible.


2018 ◽  
Vol 203 ◽  
pp. 06001
Author(s):  
Muhammad Bilal Waris ◽  
Hussain Najwani ◽  
Khalifa Al-Jabri ◽  
Abdullah Al-Saidy

To manage tyre waste and conserve natural aggregate resource, this research investigates the use of waste tyre rubber as partial replacement of fine aggregates in non-structural concrete. The research used Taguchi method to study the influence of mix proportion, water-to-cement ratio and tyre rubber replacement percentage on concrete. Nine mixes were prepared with mix proportion of 1:2:4, 1:5:4 and 1:2.5:3; water-to-cement ratio of 0.25, 0.35 and 0.40 and rubber to fine aggregate replacement of 20%, 30% and 40%. Compressive strength and water absorption tests were carried out on 100 mm cubes. Compressive strength was directly proportional to the amount of coarse aggregate in the mix. Water-to-cement ratio increased the strength within the range used in the study. Strength was found to be more sensitive to the overall rubber content than the replacement ratio. Seven out of the nine mixes satisfied the minimum strength requirement for concrete blocks set by ASTM. Water absorption and density for all mixes satisfied the limits applicable for concrete blocks. The study indicates that mix proportions with fine to coarse aggregate ratio of less than 1.0 and w/c ratio around 0.40 can be used with tyre rubber replacements of up to 30 % to satisfy requirements for non-structural concrete.


2015 ◽  
Vol 754-755 ◽  
pp. 427-431
Author(s):  
Shamshinar binti Salehuddin ◽  
Nur Liza Rahim ◽  
Norlia Mohamad Ibrahim ◽  
Siti Aza Nurdiana Tajri ◽  
Mohd Zuhaidi Zainol Abidin

Usage of waste materials as concrete mixture can reduce the waste management crisis in the world. Used tyres were widely researched as an alternative source of aggregates replacement in concrete mixture. This research is to study the behaviour of concrete incorporating rubber tyre crumb as fine aggregate replacement. The workability, compression strength and water absorption of this concrete will be determined and then compared to normal concrete. Motorcycle inner tube will be used as rubber source and it will be shredded to crumbs. Three samples of concrete with rubber as fine aggregates were prepared. Rubber crumbs will be used to replace fine aggregates in 2.5, 5.0 and 7.5% in mass. Normal concrete were prepared separately as control for comparison. Concrete mixture of 1:2:4 and 0.5 of water cement ratio were used. Slump test were done to test the workability of each mix. Twelve sample cubes from (150mm x 150mm x 150mm) each mix were prepared and cured for 7, 14 and 28 days. Compression tests were performed for each mix cube at age 7, 14 and 28 days. Water absorption test were done at age 28 days. Results revealed that rubberized concrete has better workability than normal concrete. They also have smaller compressive value and higher water absorption compared to normal concrete.


Reactive Powder Concrete is a Concrete which does not have fine &coarse aggregate in it. It is due to the high cost in coarse aggregate and at the same time scarcity of the fine aggregate. RPC is also consists of fully a partially replacement of cement .so we are using partially replacement of cement. Where it is a special concrete and the microstructure is optimized by precise degree of all particles in the mix yield to maximum density. It consists of metakaolin, quartz-sand and cement. Here we are replacing coarse and fine aggregate by quartz-sand, and cement is partially replaced by metakaolin. And the percentage of meta kaolin is identified by trial and error method. In this we get the compressive, flexural & split tensile strength of RPC for 28 days


Concrete is a widely used material in all construction work. The aim of the project is to study the behavior of concrete with replacement of E waste. The fine aggregate and coarse aggregate are naturally available due to increase in demand it is over exploited. The waste utilization is sustainable solution to environmental problems Waste from electric and electronic equipment is used as an E waste replacement for coarse aggregate in concrete which is used in the construction .Therefore the effects have been made to study the use of E waste components as a partial replacement of coarse aggregate in 5%, 10% and 15%. To determine the optimum percentage of E waste that can be replaced for coarse aggregate the compressive strength and split tensile strength of concrete to be studied. After determining the optimum percentage of E waste that can be replaced with coarse aggregate. The comparison of the conventional and optimum percentage of E waste replaced with concrete has been done


Nowadays improvement in infrastructure construction is raising its place in the present scenario. But around the globe many reinforced masonry and concrete buildings are constructed annually. There are massive numbers of structures which become worse due to adjustments in use, adjustments in loading condition and modifications in design configuration, inferior construction, and material used or natural calamities. Thus, repairing and retrofitting of this structure for secure usage of has a top notch marketplace. There are several conditions wherein a civil structure might require retrofitting. In this paper an attempt has been taken to study the strength enhancement of concrete cylinders and prisms using Basalt fibre wrap, Nitro wrap and nylon wrap.. Cubes, cylinders and prisms are tested for compressive strength test, split tensile strength test, flexural strength. Then the conventional specimens and synthetic wrapped results are compared


2018 ◽  
Vol 17 (1) ◽  
Author(s):  
Sarito Sarito ◽  
Muhtarom Riyadi ◽  
Handi Sudardja

ABSTRACTMechanic characteristics of hard mortar are: compressive strength, flexural strength, tensile strength, and adhesion power. In the meantime, at Building Material Laboratory of Civil Engineering, State Polytechnic of Jakarta, test of tensile strength and adhesion power of mortar cannot be conducted because of the absence of the test equipment.This research aims to provide electric motor-powered equipment for tensile strength test of mortar in order to complete the equipment at Building Material Laboratory of Civil Engineering, State Polytechnic of Jakarta. The particular aim of the research is to make prototype of mortar tensile strength test equipment.In this research a prototype of motor-powered mortar tensile strength test equipment and the specimens, to test the performance of the equipment, were prepared. By examining the obstacles and shortcomings, this equipment is a development of the previous research by Muhtarom Riyadi and the team, 2015. The specimens, as the sample to test the equipment, were prepared by the ratio of one part of cement and three part of fine aggregate, with the total number of the specimens of 50 pieces.By analyzing the result of observation in trial period, the equipment could function as it should be. The magnitude of maximum tensile strength that causes the mortar specimens to break depends on the quality, age, and tensile area of mortar, which magnitude can be observed in manometer or scale with the unit of kilogram.Keywords: equipment, tensile, mortar, electric motorABSTRAKSifat mekanis mortar keras antara lain kuat tekan, kuat lentur, kuat tarik dan daya lekat. Sementara ini di Laboratorium bahan bangunan Jurusan Teknik Sipil Politeknik Negeri Jakarta untuk uji kuat tarik dan daya lekat mortar belum bisa dilaksanakan karena belum adanya peralatan untuk melakukan pengujian.Penelitian ini bertujuan untuk membuat alat uji tarik mortar menggunakan tenaga penggerak motor listrik guna melengkapi peralatan yang diperlukan di Laboratorium bahan bangunan Jurusan Teknik Sipil Politeknik Negeri Jakarta. Target khusus yang ingin dicapai adalah membuat prototype alat uji tarik mortar.Dalam penelitian ini akan dibuat prototipe alat uji tarik mortar menggunakan tenaga motor listrik dan cetakan benda ujinya, sekaligus untuk menguji kinerjanya. Alat ini merupakan pengembangan oleh peneliti yang terdahulu Muhtarom Riyadi dan anggotanya, 2015), dengan mencermati kendala dan kekurangannya maka penelitian ini merupakan penyempurnaan penelitian sebelumnya Sebagai sampelnya dibuat benda uji tarik mortar dengan perbandingan 1 bagian semen berbanding 3 bagian pasir, sedangkan jumlah benda uji dibuat sebanyak 50 buah.Hasil pengamatan selama uji coba maka alat alat uji tarik mortar menggunakan tenaga penggerak motor listrik dapat berfungsi sebagaimana mestinya. Besarnya gaya tarik maksimum yang menjadikan benda uji tarik mortar putus tergantung dari mutu mortar, umur serta luas penampang tarik yang nilainya dapat diamatai pada manometer atau timbangan berat dengan satuan kilogramKata kunci : Alat, uji, tarik, mortar, motor listrik


Sign in / Sign up

Export Citation Format

Share Document