scholarly journals Karakteristik Bioplastik Kitosan-Onggok Aren (Arenga pinnata) dengan Penambahan Serbuk Kunyit

Author(s):  
Suwardi Suwardi ◽  
Nur Hidayati

<p>Bioplastics are organic plastics which one of their functions can be used as food packaging. Bioplastics are known to be environmentally friendly because they are easily degraded by nature. Chitosan can be modified with onggok palm starch in making bioplastics to increase the strength of the bioplastics. The addition of turmeric to the chitosan-onggok bioplastic is expected to increase resistance to microbes so that the bioplastic can be used as a food packaging material. This study aims to determine the bioplastic characteristics of chitosan-onggok palm sugar added with turmeric with a variation of 0.3-1.2%. Physical tests carried out include water absorption test, tensile strength test, elongicity test and biodegradation test. The increase in the amount of turmeric in water increases its water absorption, tensile strength and biodegradation properties, while the decrease in plastic elongation decreases with the increase in the amount of turmeric in the plastic.</p>

Author(s):  
Vandon T. Borela ◽  
Dhian Ashley DS. Apolinar

Purpose: The aim of this study is to examine the potential of Cellulose Nanofiber(CNF) isolated from the banana peel through chemical treatment(Alkaline Treatment, Bleaching and Acid Hydrolysis) as reinforcing agent in Soy Protein Isolate films. It also aims to find an application for this agro-industrial residue as a biodegradable material for food packaging. Study Design: Experimental Design. Materials and Methods: Chemicals such as Sodium metabisulfite, Ethanol, Potassium hydroxide, Sodium hypochlorite, Acetic Acid, Sulfuric acid, Glycerol, Sodium Hydroxide, and Hydrochloric Acid were bought from a chemical depot. FTIR Spectroscopy, SEM Imaging, Tensile Strength Test, Dimensional Stability to Heat Test were performed. Results: The results of the tests conducted(FTIR Spectroscopy, SEM Imaging, Tensile Strength Test, Dimensional Stability to Heat Test and Stability in Acidic and Alkaline Conditions Test) showed that CNFs isolated from the banana effectively reinforced the properties of Soy Protein Isolate films. Furthermore, the films fabricated are still biodegradable, displaying that the addition of the CNF does not have any significant effect on the biodegradability of the films. Conclusion: It is concluded that the addition of Banana Peel CNFs as retrofitting material to the Soy Protein Films materially strengthen the mechanical properties of the films and makes it more suitable for food packaging applications.


2020 ◽  
Vol 2 (1) ◽  
pp. 1-19
Author(s):  
Xiao Yuan ◽  
Xiao Peng ◽  
Liu Yi ◽  
Xiao Yong

The study aim was to make comparison between self-curing and traditional concrete qualities in terms of hardiness and water absorption. The study was experimental in nature and made use of material including Portland Pozzolana cement, fine aggregate, and angular coarse aggregate. The three grades of concrete were used in the experiment including M10, M20, and M30 based on cube and cylinder format. The tests involved in the study included non-destructive test, compression and split tensile strength test, and water absorption test. The findings show that overall, self-curing concrete shows better performance compare to the sprinkler or fully cured concrete. Thus, the study makes recommendation that traditional concrete may be replaced with the self-curing concrete.


2021 ◽  
Vol 2 (2) ◽  
pp. 2474-2489
Author(s):  
Thyago Lima Souza ◽  
Adriano Lopes Gualberto Filho ◽  
Deividy Kaik de Lima Araujo ◽  
Marcos André Lira Silva ◽  
Marco Antônio Assis De Oliveira ◽  
...  

The study of the use of kaolin waste has scientific and socio-environmental value by providing an appropriate destination, reducing the demand and consequent problems arising from its extraction, considering that the construction industry is a consumer of a significant amount of raw material. Thus, the study aims to replace the fine aggregate by kaolin waste in the proportions of 10%, 20% and 30%, verifying its feasibility for interlocking sidewalk pieces. The kaolin waste was used with and without fine material, and physical characterization tests of the materials were performed, and then the concrete pieces were subjected to tests of resistance to simple compression, water absorption and resistance to abrasion, as prescribed by ABNT NBR 9781:2013, and flexural tensile strength test, according to ABNT NBR 12142:2010. According to the results and analyzing the compressive strength at 28 days, the mixtures with replacement of 10% of fine aggregate by kaolin waste reached strengths greater than 35 MPa, an acceptable normative parameter, both for the waste with fines and without fines, making its use feasible.


2018 ◽  
Vol 21 (2) ◽  
pp. 80-84 ◽  
Author(s):  
Retno Ariadi Lusiana ◽  
Vivi Dia Ahmad Sangkota ◽  
Sri Juari Santosa

Evaluation character of chitosan membrane-succinate / poly vinyl alcohol-poly ethylene glycol (PVA-PEG) were prepared in acetic acid solvent through a phase inversion method has been performed. The study began with the preparation of crosslinked chitosan compounds with succinic acid, followed by preparation into membrane by combining PVA-PEG. Character analysis of the resulting material using FTIR, EDX, TGA, water absorption test, tensile strength, membrane hydrophilicity. The ability of membrane permeation was tested against creatinine. The results showed that the succinate had reacted with chitosan. Chitosan modification through cross link and polymer alloys increases tensile strength and membrane strain of 1.7-2.5 x of pure chitosan membrane. In addition, the modified membrane also has higher water absorption and hydrophilicity values than the unmodified membrane, and this implies the ability of membrane-induced creatinine permeation. Permeable permeation values were 13.8% in chitosan, 24.84% on chitosan-succinate and 25% in chitosan-succinate / PVA-PEG. Chitosan-succinate membranes have the ability to use more than 4x repeated use.


2019 ◽  
Vol 25 (4) ◽  
pp. 506-514 ◽  
Author(s):  
Himanshu Gupta ◽  
Harish Kumar ◽  
Mohit Kumar ◽  
Avneesh Kumar Gehlaut ◽  
Ankur Gaur ◽  
...  

The current study stresses on the reuse of waste lignocellulose biomass (rice husk and sugarcane bagasse) for the synthesis of carboxymethyl cellulose (CMC) and further conversion of this CMC into a biodegradable film. Addition of commercial starch was done to form biodegradable film due to its capacity to form a continuous matrix. Plasticizers such as Glycerol and citric acid were used to provide flexibility and strength to the film. Biopolymer film obtained from sugarcane bagasse CMC showed maximum tensile strength and elongation in comparison to the film synthesized from commercial CMC and CMC obtained from rice husk. It has been observed that an increase in sodium glycolate/NaCl content in CMC imposed an adverse effect on tensile strength. Opacity, moisture content, and solubility of the film increased with a rise in the degree of substitution of CMC. Therefore, CMC obtained from sugarcane bagasse was better candidate in preparing biopolymer/biocomposite film.


2019 ◽  
Vol 3 (2) ◽  
pp. 81-89
Author(s):  
Angga Pirman Firdaus ◽  
Jonbi

Indonesia ranks second in the world's largest plastic waste producer after China. Each year, Indonesia can contributeup to 187.2 million tons of plastic waste, while China reaches 262.9 million tons of plastic waste. Based on the data, one way to utilize plastic waste by using plastic waste as a mixture of concrete, where the plastic used is polypropylene (PP) plastic with different percentage of concrete mixture, the test includes compressive strength test and tensile concrete. The results of concrete compressive strength testing with polypropylene (PP) plastic waste mixture of 5%, 10% and 15% at age 28 in aggregate aggregate mixture decreased by 5.15%, 6.89% and 13.53%. As for the result of concrete tensile strength test with polypropylene (PP) plastic waste mixture of 5%, 10% and 15% at age 28 in crude aggregate mixture decreased 17,61%, 24,13% dan 23,24%.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2776 ◽  
Author(s):  
Wen-Cheng Liao ◽  
Po-Shao Chen ◽  
Chung-Wen Hung ◽  
Suyash Kishor Wagh

Tensile strength is one of the important mechanical properties of concrete, but it is difficult to measure accurately due to the brittle nature of concrete in tension. The three widely used test methods for measuring the tensile strength of concrete each have their shortcomings: the direct tension test equipment is not easy to set up, particularly for alignment, and there are no standard test specifications; the tensile strengths obtained from the test method of splitting tensile strength (American Society for Testing and Materials, ASTM C496) and that of flexural strength of concrete (ASTM C78) are significantly different from the actual tensile strength owing to mechanisms of methodologies and test setup. The objective of this research is to develop a new concrete tensile strength test method that is easy to conduct and the result is close to the direct tension strength. By applying the strut-and-tie concept and modifying the experimental design of the ASTM C78, a new concrete tensile strength test method is proposed. The test results show that the concrete tensile strength obtained by this proposed method is close to the value obtained from the direct tension test for concrete with compressive strengths from 25 to 55 MPa. It shows that this innovative test method, which is precise and easy to conduct, can be an effective alternative for tensile strength of concrete.


Sign in / Sign up

Export Citation Format

Share Document