scholarly journals Use of Recycled Tyre Rubber in Non-structural Concrete

2018 ◽  
Vol 203 ◽  
pp. 06001
Author(s):  
Muhammad Bilal Waris ◽  
Hussain Najwani ◽  
Khalifa Al-Jabri ◽  
Abdullah Al-Saidy

To manage tyre waste and conserve natural aggregate resource, this research investigates the use of waste tyre rubber as partial replacement of fine aggregates in non-structural concrete. The research used Taguchi method to study the influence of mix proportion, water-to-cement ratio and tyre rubber replacement percentage on concrete. Nine mixes were prepared with mix proportion of 1:2:4, 1:5:4 and 1:2.5:3; water-to-cement ratio of 0.25, 0.35 and 0.40 and rubber to fine aggregate replacement of 20%, 30% and 40%. Compressive strength and water absorption tests were carried out on 100 mm cubes. Compressive strength was directly proportional to the amount of coarse aggregate in the mix. Water-to-cement ratio increased the strength within the range used in the study. Strength was found to be more sensitive to the overall rubber content than the replacement ratio. Seven out of the nine mixes satisfied the minimum strength requirement for concrete blocks set by ASTM. Water absorption and density for all mixes satisfied the limits applicable for concrete blocks. The study indicates that mix proportions with fine to coarse aggregate ratio of less than 1.0 and w/c ratio around 0.40 can be used with tyre rubber replacements of up to 30 % to satisfy requirements for non-structural concrete.

2014 ◽  
Vol 554 ◽  
pp. 111-115 ◽  
Author(s):  
A.H. Nur Hidayah ◽  
Md. Nor Hasanan ◽  
P.J. Ramadhansyah

The objective of the study is to investigate the potential of using Porous Concrete Paving Blocks (PCPB) as a part of paving surface. Laboratory tests were conducted to compare and examine the effect of particle sizes of coarse aggregate. Two coarse aggregate sizes were selected; passing 8 mm retains 5 mm and passing 10 mm retains 8 mm. The fine aggregate was eliminated from mixes. The water to cement ratio used was 0.35. Compressive strength and skid resistance tests were performed to evaluate the properties of PCPB. The test results indicated that there was a reduction in the strength when coarse aggregate at different size was used. Scanning electron microscopy showed that voids, poor bonding and lack of adhesion at the boundaries of the aggregate with cement paste contributing to the low PCPB strength. However, both PCPB specimens provide 30 % to 40 % increase in skid resistance compared to Concrete Paving Blocks (CPB).


Concrete is a widely used material in all construction work. The aim of the project is to study the behavior of concrete with replacement of E waste. The fine aggregate and coarse aggregate are naturally available due to increase in demand it is over exploited. The waste utilization is sustainable solution to environmental problems Waste from electric and electronic equipment is used as an E waste replacement for coarse aggregate in concrete which is used in the construction .Therefore the effects have been made to study the use of E waste components as a partial replacement of coarse aggregate in 5%, 10% and 15%. To determine the optimum percentage of E waste that can be replaced for coarse aggregate the compressive strength and split tensile strength of concrete to be studied. After determining the optimum percentage of E waste that can be replaced with coarse aggregate. The comparison of the conventional and optimum percentage of E waste replaced with concrete has been done


2012 ◽  
Vol 2 (1) ◽  
pp. 21-28
Author(s):  
R. G. Solís ◽  
E. Moreno ◽  
E. Arjona

RESUMENLa resistencia del concreto depende de la calidad de la pasta de cemento y de las características de los agregados pétreos. La primera es controlada por la relación agua - cemento, mientras que las propiedades de los agregados generalmente no pueden ser manipuladas ya que se suele utilizar aquellos que están disponibles cerca de la construcción. En muchas regiones rocas con propiedades no deseables son utilizadas como agregado. Por lo tanto, el objetivo de este trabajo fue responder a la pregunta sobre cuál sería la máxima resistencia de diseño que se podría utilizar para concretos fabricados con un tipo específico de agregados obtenidos a partir de la trituración de roca caliza de alta absorción. Se probaron concretos con seis relaciones agua - cemento y dos tamaños de agregado grueso. Se concluyó que con los agregados estudiados es posible fabricar concretos de hasta 500 k/cm2 de f’c.Palabras clave: Absorción; agregados calizos; concreto; relación agua/cemento; resistencia.ABSTRACTConcrete strength depends on the cement paste quality and on the characteristics of the aggregates. The former is controlled by the water to cement ratio, while the properties of the aggregate, in general, cannot be manipulated as it is customary to employ the ones available near the construction site. In many regions rocks with no desirable properties are employed as aggregates. Therefore, the aim of this study was to answer the question about what would that be the maximum compressive strength attainable in concrete made with a specific type of aggregate obtained from crushed limestone of high absorption. Concrete mixtures involved six water to cement ratios and two sizes of coarse aggregate. It was concluded that with this type of aggregate it is possible to made concrete with compressive strength up to 500 k/cm2 of f’c.Key words: Absorption; compressive strength; concrete; limestone aggregate; water/cement ratio.


Author(s):  
Mohammed Sohel Ahmed

Abstract: As the demand for the structural members application in the concrete industry is continuously increasing simultaneously many a times it is required to lower the density of concrete enabling light weight which helps in easy handling of the concrete and its members. In this research an experimental endeavour has been made to equate conventional concrete with light weight by partially substituting the coarse aggregate with the pumice stone aggregate in M30 grade mix design. Simultaneously small fibres of Recron3's Polypropylene have been applied to the concrete as a reinforcing medium to minimize shrinkage cracking and improve tensile properties. The coarse aggregate was substituted by the pumice aggregate in 10, 20, 30, 40, and 50 percent and fibres respectively in 0.5, 1, 1.5, 2 and 2.5 percent. The experiment is focused on strength parameters to determine the most favourable optimum percent with respect to conventional concrete. Keywords: OPC (Ordinary Portland Cement)1, FA (Fine Aggregate)2, CA (Coarse Aggregate) 3, fck (Characteristic Compressive Strength at 28days)4, Sp. Gr (Specific Gravity)5, WC (Water Content)6, W/C (Water Cement Ratio)7, S (Standard Deviation)8, Fck (Target Average Compressive Strength at 28days)9.


2020 ◽  
Vol 38 (11A) ◽  
pp. 1706-1716
Author(s):  
Wasan I. Khalil ◽  
Qias J. Frayyeh ◽  
Mahmood F. Ahmed

The purpose of this work is to investigate the possibility to recycled and reused of waste clay brick and waste plastic as constituents in the production of green Geopolymer concrete paving bricks. Powder of clay brick waste (WBP) was used as a partial replacement of Metakaolin (MK) in Geopolymer binder. Moreover, recycled clay brick waste aggregate (BA) and plastic waste aggregate (PL) were incorporated as coarse aggregate in mixtures of Metakaolin based Geopolymer concrete (MK-GPC) pavement bricks. Six types of mixtures were prepared and cast as pavement bricks with dimensions of 150×150×100 mm. All samples have been tested for compressive strength, water absorption and abrasion resistance at age of 28 days; and compared the results with the requirements of Iraqi specification No.1606-2006. The MK-GPC pavement bricks present a compressive strength of 31-47MPa, water absorption of 3.66% to5.32% and abrasion resistance with groove length between 21.78mm to 18.91 mm. These types of pavement bricks are classified as a medium to light capacity for weight loading, and it is possible to be used in wide range of paving applications, especially in aggressive wearing environment.


2017 ◽  
Vol 36 (3) ◽  
pp. 686-690
Author(s):  
NM Ogarekpe ◽  
JC Agunwamba ◽  
FO Idagu ◽  
ES Bejor ◽  
OE Eteng ◽  
...  

The suitability of burnt and crushed cow bones (BCCB) as partial replacement for fine aggregate in concrete was studied. The percentages of replacements of fine aggregates of 0, 10, 20, 30, 40 and 50%, respectively of BCCB were tested considering 1: 2: 4 and 1: 11/2 :3 concrete mix ratios. The cow bones were burnt for 50 minutes up to 92oC before being crushed. Ninety-six (96) concrete cubes of 1: 2: 4 mix ratio and ninety-six (96) concrete cubes of 1 : : 3 mix ratio measuring 150x150x150mm were tested for the compressive strength at 7, 14, 21 and 28 days respectively. The research revealed that the BCCB acted as a retarder in the concrete. Water-cement ratio increased with the increase in the percentage of the BCCB. The mixes of 1:2:4 and 1::3 at 28 days curing yielded average compressive strengths in N/mm2 ranging from 16.49 - 24.29 and 18.71 - 29.73, respectively. For the mix ratios of 1:2:4 and 1:: 3 at 28 days curing age,  it was observed that increase in the BCCB content beyond 40 and 50%, respectively resulted to the reduction of the average compressive strength below recommended minimum strength for use of concrete in structural works.http://dx.doi.org/10.4314/njt.v36i3.4


Author(s):  
Harshit Sangtani ◽  
Bhavini Jain ◽  
K Narayana Shenoy

In the present research an attempt has been made to replace some part of fine aggregate (sand) by an industrial waste, the industrial waste under investigation is produced when the PVC pipes are cut into the desired sizes, it is a very thin flaky substance having a specific gravity of 1.5.This material is very voluminous in nature, so it reduces the workability of concrete if used in large percentage. So this material cannot be used in very large quantities but it can successfully replace sand up to 20 percent when used in pavement blocks. Experimentation was done at a water-cement ratio ranging from 0.43-0.35.Compressive strength of the concrete has been evaluated at 7 days, 14 days 21 days and 28 days. Results of the investigation indicate that compressive strength of the concrete decreases as the percentage of PVC waste material increases.7 day strength of the concrete has varied from 35.55 MPa to 70.01 MPa and 28 day strength has varied from 56.7 MPa to 76 MPa. Water absorption was well within the limits and varied from 4.67% to 7.26% by mass. The results revealed that this waste material can satisfactorily replace sand in small amount also it is a great way to dispose of the waste and hence is a step forward in the quest for a greener concrete.


2013 ◽  
Vol 368-370 ◽  
pp. 1090-1094
Author(s):  
Yuan Xu ◽  
Xiao Ping Wang ◽  
Juan Cheng ◽  
Dong Wang

Study four factors - water consumption , water-cement ratio , recycled fine aggregate replacement ratio of recycled coarse aggregate replacement rate - affect the regularity of the load-bearing hollow block compressive strength of recycled concrete by orthogonal test method , the test showed that , water consumption factors affect the compressive strength of recycled concrete block design with than the emphasis on the control of water consumption . Under the test conditions , the optimum mixture ratio of recycled concrete load-bearing block : water consumption of 160 kg / m 3 , the water cement ratio 0.45 , recycled fine aggregate replacement ratio of 30% recycled coarse aggregate replacement ratio of 30% .


2016 ◽  
Vol 866 ◽  
pp. 58-62 ◽  
Author(s):  
Oluwarotimi M. Olofinnade ◽  
Julius M. Ndambuki ◽  
Anthony N. Ede ◽  
David O. Olukanni

Reusing of waste glass in concrete production is among the attractive option of achieving waste reduction and preserving the natural resources from further depletion thereby protecting the environment and achieving sustainability. This present study examines the possible reuse of waste glass crushed into fine and coarse aggregate sizes as partial substitute for natural fine and coarse aggregate in concrete. The variables in this study is both the fine and coarse aggregate while the cement and water-cement ratio were held constant. The crushed glass was varied from 0 – 100% in steps of 25% by weight to replace the both the natural fine and coarse aggregate in the same concrete mix. Concrete mixes were prepared using a mix proportion of 1:2:4 (cement: fine aggregate: coarse aggregate) at water-cement ratio of 0.5 targeting a design strength of 20 MPa. Tests were carried out on total number of 90 concrete cube specimens of size 150 x 150 x150 mm and 90concrete cylinder specimens of dimension 100 mm diameter by 200 mm height after 3, 7, 14, 28, 42 and 90 days of curing. Test results indicated that the compressive and split tensile strength of the hardened concrete decreases with increasing waste glass content compared with the control. However, concrete mix made with 25% waste glass content compared significantly well with the control and can be suitably adopted for production of light weight concrete.


2014 ◽  
Vol 911 ◽  
pp. 433-437 ◽  
Author(s):  
A.H. Nur Hidayah ◽  
Md Nor Hasanan ◽  
P.J. Ramadhansyah

Properties of Porous Concrete Paving Blocks (PCPB) were investigated in this study. Two groups of coarse aggregate sizes were performed; passing 8 mm retains 5 mm and passing 10 mm retains 8 mm. For mixture design, 100 % of coarse aggregate were used. However, fine aggregate was eliminated in this investigation. The density, water absorption, flakiness index and elongation index test were performed to determine the properties of the coarse aggregate used in this study. Compression test and skid resistance test were used to evaluate the performance of PCPB. The results show that PCPB containing coarse aggregate size 5 8 mm give high compressive strength compared to others PCPB specimen. In addition, both PCPB specimens give an in increasing in skid resistance approximately 30 % compared to Concrete Paving Blocks (CPB).


Sign in / Sign up

Export Citation Format

Share Document