A Study on the Sensitivity of Basic Reproduction Number of an Influenza Epidemic Model

2012 ◽  
Author(s):  
Md Samsuzzoha ◽  
Manmohan Singh ◽  
David Lucy
2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Lian Duan ◽  
Lihong Huang ◽  
Chuangxia Huang

<p style='text-indent:20px;'>In this paper, we are concerned with the dynamics of a diffusive SIRI epidemic model with heterogeneous parameters and distinct dispersal rates for the susceptible and infected individuals. We first establish the basic properties of solutions to the model, and then identify the basic reproduction number <inline-formula><tex-math id="M1">\begin{document}$ \mathscr{R}_{0} $\end{document}</tex-math></inline-formula> which serves as a threshold parameter that predicts whether epidemics will persist or become globally extinct. Moreover, we study the asymptotic profiles of the positive steady state as the dispersal rate of the susceptible or infected individuals approaches zero. Our analytical results reveal that the epidemics can be extinct by limiting the movement of the susceptible individuals, and the infected individuals concentrate on certain points in some circumstances when limiting their mobility.</p>


2019 ◽  
Vol 2 (1) ◽  
pp. 13
Author(s):  
Panca Putra Pemungkas ◽  
Sutrisno Sutrisno ◽  
Sunarsih Sunarsih

This paper is addressed to discuss the development of epidemic model of SIRA (Susceptible-Infected-Removed-Antidotal) for virus spread analysis purposes on a computer network. We have developed the existing model by adding a possibility of antidotal computer returned to susceptible computer. Based on the results, there are two virus-free equilibrium points and one endemic equilibrium point. These equilibrium points were analyzed for stability issues using basic reproduction number and Routh-Hurwitz Method.


2020 ◽  
Vol 10 (22) ◽  
pp. 8296 ◽  
Author(s):  
Malen Etxeberria-Etxaniz ◽  
Santiago Alonso-Quesada ◽  
Manuel De la Sen

This paper investigates a susceptible-exposed-infectious-recovered (SEIR) epidemic model with demography under two vaccination effort strategies. Firstly, the model is investigated under vaccination of newborns, which is fact in a direct action on the recruitment level of the model. Secondly, it is investigated under a periodic impulsive vaccination on the susceptible in the sense that the vaccination impulses are concentrated in practice in very short time intervals around a set of impulsive time instants subject to constant inter-vaccination periods. Both strategies can be adapted, if desired, to the time-varying levels of susceptible in the sense that the control efforts be increased as those susceptible levels increase. The model is discussed in terms of suitable properties like the positivity of the solutions, the existence and allocation of equilibrium points, and stability concerns related to the values of the basic reproduction number. It is proven that the basic reproduction number lies below unity, so that the disease-free equilibrium point is asymptotically stable for larger values of the disease transmission rates under vaccination controls compared to the case of absence of vaccination. It is also proven that the endemic equilibrium point is not reachable if the disease-free one is stable and that the disease-free equilibrium point is unstable if the reproduction number exceeds unity while the endemic equilibrium point is stable. Several numerical results are investigated for both vaccination rules with the option of adapting through ime the corresponding efforts to the levels of susceptibility. Such simulation examples are performed under parameterizations related to the current SARS-COVID 19 pandemic.


2012 ◽  
Vol 54 (1-2) ◽  
pp. 108-115 ◽  
Author(s):  
M. G. ROBERTS

AbstractAnnual epidemics of influenza A typically involve two subtypes, with a degree of cross-immunity. We present a model of an epidemic of two interacting viruses, where the degree of cross-immunity may be unknown. We treat the unknown as a second independent variable, and expand the dependent variables in orthogonal functions of this variable. The resulting set of differential equations is solved numerically. We show that if the population is initially more susceptible to one variant, if that variant invades earlier, or if it has a higher basic reproduction number than the other variant, then its dynamics are largely unaffected by cross-immunity. In contrast, the dynamics of the other variant may be considerably restricted.


Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 328 ◽  
Author(s):  
Yanli Ma ◽  
Jia-Bao Liu ◽  
Haixia Li

In this paper, an SIQR (Susceptible, Infected, Quarantined, Recovered) epidemic model with vaccination, elimination, and quarantine hybrid strategies is proposed, and the dynamics of this model are analyzed by both theoretical and numerical means. Firstly, the basic reproduction number R 0 , which determines whether the disease is extinct or not, is derived. Secondly, by LaSalles invariance principle, it is proved that the disease-free equilibrium is globally asymptotically stable when R 0 < 1 , and the disease dies out. By Routh-Hurwitz criterion theory, we also prove that the disease-free equilibrium is unstable and the unique endemic equilibrium is locally asymptotically stable when R 0 > 1 . Thirdly, by constructing a suitable Lyapunov function, we obtain that the unique endemic equilibrium is globally asymptotically stable and the disease persists at this endemic equilibrium if it initially exists when R 0 > 1 . Finally, some numerical simulations are presented to illustrate the analysis results.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jinliang Wang ◽  
Hongquan Sun

This paper is concerned with a reaction-diffusion heroin model in a bound domain. The objective of this paper is to explore the threshold dynamics based on threshold parameter and basic reproduction number (BRN) ℜ0, and it is proved that if ℜ0<1, heroin spread will be extinct, while if ℜ0>1, heroin spread is uniformly persistent and there exists a positive heroin-spread steady state. We also obtain that the explicit formula of ℜ0 and global attractiveness of constant positive steady state (PSS) when all parameters are positive constants. Our simulation results reveal that compared to the homogeneous setting, the spatial heterogeneity has essential impacts on increasing the risk of heroin spread.


2009 ◽  
Vol 2009 ◽  
pp. 1-17 ◽  
Author(s):  
Xiaohong Tian ◽  
Rui Xu

We investigate the stability of an SIR epidemic model with stage structure and time delay. By analyzing the eigenvalues of the corresponding characteristic equation, the local stability of each feasible equilibrium of the model is established. By using comparison arguments, it is proved when the basic reproduction number is less than unity, the disease free equilibrium is globally asymptotically stable. When the basic reproduction number is greater than unity, sufficient conditions are derived for the global stability of an endemic equilibrium of the model. Numerical simulations are carried out to illustrate the theoretical results.


2015 ◽  
Vol 08 (02) ◽  
pp. 1550027 ◽  
Author(s):  
Aadil Lahrouz

An epidemic model with a class of nonlinear incidence rates and distributed delay is analyzed. The nonlinear incidence is used to describe the saturated or the psychological effect of certain serious epidemics on the community when the number of infectives is getting larger. The distributed delay is derived to describe the dynamics of infectious diseases with varying immunity. Lyapunov functionals are used to show that the disease-free equilibrium state is globally asymptotically stable when the basic reproduction number is less than or equal to one. Moreover, it is shown that the disease is permanent if the basic reproduction number is greater than one. Furthermore, the sufficient conditions under which the endemic equilibrium is locally and globally asymptotically stable are obtained.


Sign in / Sign up

Export Citation Format

Share Document