DATA ANALYSIS WHEN CREATING AN EXTENDED GIGABIT OPTICAL NETWORK

2021 ◽  
Vol 75 (3) ◽  
pp. 148-157
Author(s):  
А.Т. Tokhmetov ◽  
◽  
A. D. Tusupov ◽  
L.A. Tanchenko ◽  
◽  
...  

The article describes the application of data analysis, which allows, based on the processed experimental data, to obtain new knowledge about the behavior and capabilities of a gigabit passive optical network (GPON network). The description of the test bench of the GPON network is given. The paper studied the characteristics of semiconductor optical amplifiers used to increase the range of GPON networks, as well as their dependence on the input power and signal wavelength. For data processing, the MatLab mathematical calculation automation package and the OriginLab package for numerical data analysis and scientific graphics were used. It is shown that the use of an EDFA amplifier (an optical amplifier on an erbium-doped fiber) in the architecture of a gigabit passive optical network is the best choice and allows expanding the range of the GPON network from 20 kilometers to 60 kilometers.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Raju Sharma ◽  
Anuj Kumar Gupta

Abstract Gigabit-capable passive optical network (GPON) is a passive optical network that provides faster data transmission and reception using point-to-multipoint access technology with single fiber. Using passive splitter in distribution network to keep the costs down, its 2.5 Gbits/sec bandwidth can be split up to 64 times. This paper presents the study of max Q-factor, min bit error rate (BER) using Opti system 17. In this study return to zero (RZ) and nonreturn to zero (NRZ) line codes analyzed by using P-insulator-N (PIN) and avalanche photo diode (APD) receivers. This paper also studies the impact of CW laser power on Q factor and min BER of GPON with and without erbium-doped fiber amplifier (EDFA).


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Meet Kumari ◽  
Reecha Sharma ◽  
Anu Sheetal

AbstractNowadays, bandwidth demand is enormously increasing, that causes the existing passive optical network (PON) to become the future optical access network. In this paper, next generation passive optical network 2 (NG-PON2) based, optical time division multiplexing passive optical network (OTDM-PON), wavelength division multiplexing passive optical network (WDM-PON) and time & wavelength division multiplexing passive optical network (TWDM-PON) systems with 20 Gbps (8 × 2.5 Gbps) downstream and 20 Gbps (8 × 2.5 Gbps) upstream capacity for eight optical network units has been proposed. The performance has been compared by varying the input power (−6 to 27 dBm) and transmission distance (10–130 km) in terms of Q-factor and optical received power in the presence of fiber noise and non-linearities. It has been observed that TWDM-PON outperforms OTDM-PON and WDM-PON for high input power and data rate (20/20 Gbps). Also, TWDM-PON shows its superiority for long-reach transmission up to 130 km, which is a cost-effective solution for future NG-PON2 applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
M. S. Salleh ◽  
A. S. M. Supa’at ◽  
S. M. Idrus ◽  
S. Yaakob ◽  
Z. M. Yusof

We propose a new architecture of dynamic time-wavelength division multiplexing-passive optical network (TWDM-PON) system that employs integrated all-optical packet routing (AOPR) module using4λ×10 Gbps downstream signal to support 20 km fiber transmission. This module has been designed to support high speed L2 aggregation and routing in the physical layer PON system by using multicasting cross-gain modulation (XGM) to route packet from any PON port to multiple PON links. Meanwhile, the fixed wavelength optical line terminal (OLT) transmitter with wavelength tuning free features has been designed to integrate with the semiconductor optical amplifier (SOA) and passive arrayed waveguide grating (AWG). By implementing hybrid multicasting and multiplexing, the system has been able to support a PON system with full flexibility function for managing highly efficient dynamic bandwidth allocation to support the4λ×10 Gb/s TWDM-PON system used to connect 4 different PON links using fixed wavelength OLT transceivers with maximum 38 dB link loss.


2015 ◽  
Vol 36 (2) ◽  
Author(s):  
N. Ahmed ◽  
Hilal A. Fadhil ◽  
S. A. Aljunid ◽  
Md. Sharafat Ali ◽  
Matiur Rahman

AbstractIn this paper, the performance of wavelength division multiplexing-passive optical network (WDM-PON) system using the erbium-doped fiber amplifier (EDFA) is optimized and evaluated. The optimization is analyzed by finding the EDFA length range at which the output power produced are the highest and the pump power range at which the gain flatness produced are within the effective range (0.3 dB). After the optimization process, the optimized EDFA system produces the gain of 26.6±0.292 dB, noise figure of 3.82 dB and output power of 7 dBm and the system is then implemented into WDM system. The performance of WDM system is compared against the system without EDFA in terms of bit error rate (BER). Results obtained prove that the proposed system with the EDFA consistently performs better than the conventional system.


Sign in / Sign up

Export Citation Format

Share Document