scholarly journals EDA and EDAR expression at different stages of hair follicle development in cashmere goats and effects on expression of related genes

2020 ◽  
Vol 63 (2) ◽  
pp. 461-470
Author(s):  
Zhihong Wu ◽  
Yu Wang ◽  
Wenjing Han ◽  
Kun Yang ◽  
Erhan Hai ◽  
...  

Abstract. This study is focused on the detection of ectodysplasin A (EDA) and ectodysplasin A receptor (EDAR) mRNA expression levels and protein positions in seven stages of cashmere goat fetus development (45, 55, 65, 75 95, 115, and 135 d), with the main goal of investigating the effect of EDA and EDAR on genes related to hair follicle development. Quantitative real-time polymerase chain reaction (RT-qPCR) was used to measure EDA and EDAR expression levels in seven stages of cashmere goat fetus development. Immunohistochemistry (IHC) was used to locate EDA and EDAR in the critical stage of fetal hair follicle development (45–135 d). EDA and EDAR expression in fetal fibroblasts and epithelial cells was interfered with by short hairpin RNA (sh-RNA). The results indicated that EDA and EDAR were both expressed in the skin tissue in the seven cashmere goat embryo stages. Moreover, EDA and EDAR play an important role in the formation of embryonic placode (Pc). After interfering with EDA and EDAR, the expression of BMP2, BMP4, noggin, β-catenin, TGF-β2, Wnt-10b, and NOTCH1 in fibroblasts and epithelial cells changed significantly. This study provides a theoretical and experimental basis for further studying the molecular regulation mechanism of hair follicle development.

Author(s):  
Erhan Hai ◽  
Wenjing Han ◽  
Zhihong Wu ◽  
Rong Ma ◽  
Fangzheng Shang ◽  
...  

Abstract Background MicroRNAs (miRNAs), a class of 22 nucleotide (nt) non-coding RNAs, negatively regulate mRNA post-transcriptional modification in various biological processes. Initiation of skin hair follicles in cashmere goats is a dynamic process involving many key signalling molecules, but the associated cellular biological mechanisms induced by these key signalling molecules have not been reported. Results In this study, differential expression, bioinformatics, and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on miRNA expression profiles of Inner Mongolian cashmere goats at 45, 55, and 65 days during the foetal period, and chi-miR-370-3p was identified and investigated further. Real-time fluorescence quantification (qRT-PCR), dual luciferase reporting, and western blotting results showed that transforming growth factor beta receptor 2 (TGF-βR2) and fibroblast growth factor receptor 2 (FGFR2) were the target genes of chi-miR-370-3p. Chi-miR-370-3p also regulated the expression of TGF-βR2 and FGFR2 at mRNA and protein levels in epithelial cells and dermal fibroblasts. DNA staining, Cell Counting Kit-8 (CCK8), and fluorescein-labelled Annexin V results showed that chi-miR-370-3p inhibited the proliferation of epithelial cells and fibroblasts, but had no effect on apoptosis. Cell scratch test results showed that chi-miR-370-3p promoted the migration of epithelial cells and fibroblasts. Conclusion Chi-miR-370-3p inhibits the proliferation of epithelial cells and fibroblasts by targeting TGF-βR2 and FGFR2, thereby improving cell migration ability, and ultimately regulating the fate of epithelial cells and dermal fibroblasts to develop the placode (PC) and dermal condensate (DC), inducing hair follicle development.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243507
Author(s):  
Zhihong Wu ◽  
Erhan Hai ◽  
Zhengyang Di ◽  
Rong Ma ◽  
Fangzheng Shang ◽  
...  

Objective Mature hair follicles represent an important stage of hair follicle development, which determines the stability of hair follicle structure and its ability to enter the hair cycle. Here, we used weighted gene co-expression network analysis (WGCNA) to identify hub genes of mature skin and hair follicles in Inner Mongolian cashmere goats. Methods We used transcriptome sequencing data for the skin of Inner Mongolian cashmere goats from fetal days 45–135 days, and divided the co expressed genes into different modules by WGCNA. Characteristic values were used to screen out modules that were highly expressed in mature skin follicles. Module hub genes were then selected based on the correlation coefficients between the gene and module eigenvalue, gene connectivity, and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The results were confirmed by quantitative polymerase chain reaction (qPCR). Results Ten modules were successfully defined, of which one, with a total of 3166 genes, was selected as a specific module through sample and gene expression pattern analyses. A total of 584 candidate hub genes in the module were screened by the correlation coefficients between the genes and module eigenvalue and gene connectivity. Finally, GO/KEGG functional enrichment analyses detected WNT10A as a key gene in the development and maturation of skin hair follicles in fetal Inner Mongolian cashmere goats. qPCR showed that the expression trends of 13 genes from seven fetal skin samples were consistent with the sequencing results, indicating that the sequencing results were reliable.n


2021 ◽  
Vol 12 ◽  
Author(s):  
Junyang Liu ◽  
Qing Mu ◽  
Zhihong Liu ◽  
Yan Wang ◽  
Jiasen Liu ◽  
...  

Secondary hair follicle growth in cashmere goats has seasonal cycle changes, and melatonin (MT) has a regulatory effect on the cashmere growth cycle. In this study, the growth length of cashmere was measured by implanting MT in live cashmere goats. The results indicated that the continuous implantation of MT promoted cashmere to enter the anagen 2 months earlier and induce secondary hair follicle development. HE staining of skin tissues showed that the number of secondary hair follicles in the MT-implanted goats was significantly higher than that in the control goats (P < 0.05). Transcriptome sequencing of the skin tissue of cashmere goats was used to identify differentially expressed genes: 532 in February, 641 in October, and 305 in December. Fluorescence quantitative PCR and Western blotting results showed that MT had a significant effect on the expression of Wnt10b, β-catenin, and proteins in the skin tissue of Inner Mongolia cashmere goats. This finding suggested that MT alters the cycle of secondary hair follicle development by changing the expression of related genes. This research lays the foundation for further study on the mechanism by which MT regulates cashmere growth.


2020 ◽  
Author(s):  
Wei Ge ◽  
Wei-Dong Zhang ◽  
Yue-Lang Zhang ◽  
Yu-Jie Zheng ◽  
Fang Li ◽  
...  

AbstractCashmere, also known as soft gold, is produced from the secondary hair follicles in Cashmere goats and it’s therefore of significance to investigate the molecular profiles during Cashmere goat hair follicle development. However, our current understanding of the machinery underlying Cashmere goat hair follicle remains largely unexplored and researches regarding hair follicle development mainly used the mouse as a research model. To provides comprehensively understanding on the cellular heterogeneity and cell lineage cell fate decisions, we performed single-cell RNA sequencing on 19,705 single cells from induction (embryonic day 60), organogenesis (embryonic day 90) and cytodifferentiation (embryonic day 120) stages of fetus Cashmere goat dorsal skin. Unsupervised clustering analysis identified 16 cell clusters and their corresponding cell types were also unprecedentedly characterized. Based on the lineage inference, we revealed detailed molecular landscape along the dermal and epidermal cell lineage developmental pathways. Notably, by cross-species comparasion of single cell data with murine model, we revelaed conserved programs during dermal condensate fate commitment and the heterochrony development of hair follicle development between mouse and Cashmere goat were also discussed here. Our work here delineate unparalleled molecular profiles of different cell populations during Cashmere goat hair follicle morphogenesis and provide a valuable resource for identifying biomarkers during Cashmere goat hair follicle development.


Sign in / Sign up

Export Citation Format

Share Document