scholarly journals Short-lived climate forcers from current shipping and petroleum activities in the Arctic

2012 ◽  
Vol 12 (4) ◽  
pp. 1979-1993 ◽  
Author(s):  
K. Ødemark ◽  
S. B. Dalsøren ◽  
B. H. Samset ◽  
T. K. Berntsen ◽  
J. S. Fuglestvedt ◽  
...  

Abstract. Emissions of short-lived climate forcers (SLCF) in the Arctic region are expected to increase, notably from shipping and petroleum extraction. We here discuss changes in atmospheric SLCF concentrations and resulting radiative forcing (RF) from present day shipping and petroleum activities in the Arctic. The three-dimensional chemistry transport OsloCTM2 and a state of the art radiative forcing model are used, based on a coherent dataset of present day Arctic emissions. We find that the net RF of SLCF of shipping in the Arctic region is negative, mainly due to the direct and indirect RF effects of sulphate emissions, while the net RF of SLCF of petroleum extraction is positive, mainly due to the effects of black carbon aerosols in the air and deposited on snow. Strong seasonal variations of the sensitivities to emissions are found. In terms of annual mean values we find that the Arctic sensitivities to SLCF is similar to global average sensitivities. One exception to this is the stronger snow/ice albedo effect from BC emissions.

Author(s):  
Polina S. Osipova ◽  
◽  
Arkadiy V. Zlobinskiy ◽  
Vladimir V. Potapov ◽  
◽  
...  

As part of the RSF project, the use of a drifting surface on which geophysical installations will be placed is proposed to study the environment in the Arctic region. The proposed method of electrical exploration is sounding with a circular electric dipole as a source. Studying the applicability of the technique requires three–dimensional simulation of the received signal. The paper shows some simulation results using the previously proposed algorithm based on the Born approximation.


2019 ◽  
Vol 2 (2) ◽  
pp. 116-123
Author(s):  
Polina Osipova ◽  
Vladimir Mogilatov ◽  
Arkadiy Zlobinskiy

Electromagnetic sounding of the Arctic region is hampered by the influence of the conductive layer of seawater. As part of the RSF project, it is proposed to use a circular electrical dipole (CED) to excite the field. Installation should be placed on drifting ice. This technique requires three-dimensional modeling for which there are complex algorithms. The paper proposes an approach using the Born approximation to simplify the implementation of three-dimensional modeling of the electromagnetic sounding signal using CED.


2021 ◽  
Author(s):  
Mika Rantanen ◽  
Alexey Karpechko ◽  
Antti Lipponen ◽  
Kalle Nordling ◽  
Otto Hyvärinen ◽  
...  

Abstract In recent decades, the warming in the Arctic has been much faster than in the rest of the world, a phenomenon known as Arctic amplification (AA). Numerous studies report that Arctic is warming either twice, more than twice, or even three times as fast as the globe on average. However, the lack of consensus of AA definition precludes its precise quantification. Here we show, by using several observational datasets which cover the Arctic region and adopting a simple definition of AA, that during the last 40 years the Arctic has been warming almost four times faster than the globe as a whole, which is a higher ratio than generally reported in literature. Furthermore, we compared the observed AA ratio to the ratio simulated by state-of-the-art climate models, and show that the models largely underestimate the present AA, a finding that is not very sensitive to the exact definition of AA. The underestimation of AA by climate models most likely results from their inability to realistically simulate feedback mechanisms between sea ice melt and atmospheric temperatures. Our results imply that the underestimated AA leads to biased projections of climate change both in the Arctic and mid-latitudes.


2019 ◽  
Vol 19 (9) ◽  
pp. 6419-6435 ◽  
Author(s):  
Rashed Mahmood ◽  
Knut von Salzen ◽  
Ann-Lise Norman ◽  
Martí Galí ◽  
Maurice Levasseur

Abstract. Dimethylsulfide (DMS), outgassed from ocean waters, plays an important role in the climate system, as it oxidizes to methane sulfonic acid (MSA) and sulfur dioxide (SO2), which can lead to the formation of sulfate aerosol. Newly formed sulfate aerosol resulting from DMS oxidation may grow by condensation of gases, in-cloud oxidation, and coagulation to sizes where they may act as cloud condensation nuclei (CCN) and influence cloud properties. Under future global warming conditions, sea ice in the Arctic region is expected to decline significantly, which may lead to increased emissions of DMS from the open ocean and changes in cloud regimes. In this study we evaluate impacts of DMS on Arctic sulfate aerosol budget, changes in cloud droplet number concentration (CDNC), and cloud radiative forcing in the Arctic region under current and future sea ice conditions using an atmospheric global climate model. Given that future DMS concentrations are highly uncertain, several simulations with different surface seawater DMS concentrations and spatial distributions in the Arctic were performed in order to determine the sensitivity of sulfate aerosol budgets, CDNC, and cloud radiative forcing to Arctic surface seawater DMS concentrations. For any given amount and distribution of Arctic surface seawater DMS, similar amounts of sulfate are produced by oxidation of DMS in 2000 and 2050 despite large increases in DMS emission in the latter period due to sea ice retreat in the simulations. This relatively low sensitivity of sulfate burden is related to enhanced sulfate wet removal by precipitation in 2050. However simulated aerosol nucleation rates are higher in 2050, which results in an overall increase in CDNC and substantially more negative cloud radiative forcing. Thus potential future reductions in sea ice extent may cause cloud albedos to increase, resulting in a negative climate feedback on radiative forcing in the Arctic associated with ocean DMS emissions.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Anastasia Yastrebova ◽  
Marko Hoyhtya ◽  
Sandrine Boumard ◽  
Elena Simona Lohan ◽  
Aleksandr Ometov

2021 ◽  
Author(s):  
Suzanne L. Gray ◽  
Kevin Hodges ◽  
Jonathan Vautrey ◽  
John Methven

<p>Human activity in the Arctic is expected to increase as new regions become accessible, with a consequent need for reliable forecasts of hazardous weather. Arctic cyclones are synoptic-scale cyclones developing within or moving into the Arctic region. Meso- to synoptic-scale tropopause-based coherent vortices called tropopause polar vortices (TPVs) are frequently observed in polar regions and are a proposed mechanism for Arctic cyclone genesis and intensification. While the importance of pre-existing tropopause-level features for cyclone development, and their existence as part of the three-dimensional mature cyclone structure, is well established in the mid-latitudes, evidence of the importance of pre-existing TPVs for Arctic cyclone development is more limited. Here we present a climatology and characteristics of summer Arctic cyclones and TPVs, produced by tracking them in the latest global ECMWF reanalysis (ERA5), and determine the role of pre-existing TPVs in the initiation and intensification of these cyclones.</p>


2013 ◽  
Vol 13 (4) ◽  
pp. 1941-1955 ◽  
Author(s):  
S. B. Dalsøren ◽  
B. H. Samset ◽  
G. Myhre ◽  
J. J. Corbett ◽  
R. Minjares ◽  
...  

Abstract. We quantify the concentrations changes and Radiative Forcing (RF) of short-lived atmospheric pollutants due to shipping emissions of NOx, SOx, CO, NMVOCs, BC and OC. We use high resolution ship emission inventories for the Arctic that are more suitable for regional scale evaluation than those used in former studies. A chemical transport model and a RF model are used to evaluate the time period 2004–2030, when we expect increasing traffic in the Arctic region. Two datasets for ship emissions are used that characterize the potential impact from shipping and the degree to which shipping controls may mitigate impacts: a high (HIGH) scenario and a low scenario with Maximum Feasible Reduction (MFR) of black carbon in the Arctic. In MFR, BC emissions in the Arctic are reduced with 70% representing a combination technology performance and/or reasonable advances in single-technology performance. Both scenarios result in moderate to substantial increases in concentrations of pollutants both globally and in the Arctic. Exceptions are black carbon in the MFR scenario, and sulfur species and organic carbon in both scenarios due to the future phase-in of current regulation that reduces fuel sulfur content. In the season with potential transit traffic through the Arctic in 2030 we find increased concentrations of all pollutants in large parts of the Arctic. Net global RFs from 2004–2030 of 53 mW m−2 (HIGH) and 73 mW m−2 (MFR) are similar to those found for preindustrial to present net global aircraft RF. The found warming contrasts with the cooling from historical ship emissions. The reason for this difference and the higher global forcing for the MFR scenario is mainly the reduced future fuel sulfur content resulting in less cooling from sulfate aerosols. The Arctic RF is largest in the HIGH scenario. In the HIGH scenario ozone dominates the RF during the transit season (August–October). RF due to BC in air, and snow and ice becomes significant during Arctic spring. For the HIGH scenario the net Arctic RF during spring is 5 times higher than in winter.


2018 ◽  
Author(s):  
Rashed Mahmood ◽  
Knut von Salzen ◽  
Ann-Lise Norman ◽  
Martí Galí ◽  
Maurice Levasseur

Abstract. Dimethylsulfide (DMS), outgassed from ocean waters, plays an important role in the climate system, as it oxidizes to methane sulfonic acid (MSA) and sulfur dioxide (SO2), which can lead to the formation of sulfate aerosol. Newly formed sulfate aerosol resulting from DMS oxidation may grow by condensation of gases, in-cloud oxidation, and coagulation to sizes where they may act as cloud condensation nuclei (CCN) and influence cloud properties. Under future global warming conditions, sea-ice in the Arctic region is expected to decline significantly, which may lead to increased emissions of DMS from the open ocean and changes in cloud regimes. In this study we evaluate impacts of DMS on Arctic sulfate aerosol budget, changes in cloud droplet number concentration (CDNC), and cloud radiative forcing in the Arctic region under current and future sea ice conditions using an atmospheric global climate model. Given that future DMS concentrations are highly uncertain, several simulations with different surface seawater DMS concentrations and spatial distributions in the Arctic were performed in order to determine the sensitivity of sulfate aerosol budgets, CDNC, and cloud radiative forcing to Arctic surface seawater DMS concentrations. For any given amount and distribution of Arctic surface seawater DMS, similar amounts of sulfate are produced by oxidation of DMS in 2000 and 2050 despite large increases in DMS emission in the latter period due to sea ice retreat in the simulations. This relatively low sensitivity of sulfate burden is related to enhanced sulfate wet removal by precipitation in 2050. However simulated aerosol nucleation rates are higher in 2050, which results in an overall increase in CDNC and substantially more negative cloud radiative forcing. Thus potential future reductions in sea ice extent may cause cloud albedos to increase, resulting in a negative climate feedback on radiative forcing in the Arctic associated with ocean DMS emissions.


2013 ◽  
Vol 2013 (0) ◽  
pp. 190-191
Author(s):  
Wataru Muranaka ◽  
Takuya Kawahara ◽  
Hikaru Fukasawa ◽  
Satonori Nozawa

Sign in / Sign up

Export Citation Format

Share Document