scholarly journals Assimilation of IASI partial tropospheric columns with an Ensemble Kalman Filter over Europe

2012 ◽  
Vol 12 (5) ◽  
pp. 2513-2532 ◽  
Author(s):  
A. Coman ◽  
G. Foret ◽  
M. Beekmann ◽  
M. Eremenko ◽  
G. Dufour ◽  
...  

Abstract. Partial lower tropospheric ozone columns provided by the IASI (Infrared Atmospheric Sounding Interferometer) instrument have been assimilated into a chemistry-transport model at continental scale (CHIMERE) using an Ensemble Square Root Kalman Filter (EnSRF). Analyses are made for the month of July 2007 over the European domain. Launched in 2006, aboard the MetOp-A satellite, IASI shows high sensitivity for ozone in the free troposphere and low sensitivity at the ground; therefore it is important to evaluate if assimilation of these observations can improve free tropospheric ozone, and possibly surface ozone. The analyses are validated against independent ozone observations from sondes, MOZAIC1 aircraft and ground based stations (AIRBASE – the European Air quality dataBase) and compared with respect to the free run of CHIMERE. These comparisons show a decrease in error of 6 parts-per-billion (ppb) in the free troposphere over the Frankfurt area, and also a reduction of the root mean square error (respectively bias) at the surface of 19% (33%) for more than 90% of existing ground stations. This provides evidence of the potential of data assimilation of tropospheric IASI columns to better describe the tropospheric ozone distribution, including surface ozone, despite the lower sensitivity. The changes in concentration resulting from the observational constraints were quantified and several geophysical explanations for the findings of this study were drawn. The corrections were most pronounced over Italy and the Mediterranean region, we noted an average reduction of 8–9 ppb in the free troposphere with respect to the free run, and still a reduction of 5.5 ppb at ground, likely due to a longer residence time of air masses in this part associated to the general circulation pattern (i.e. dominant western circulation) and to persistent anticyclonic conditions over the Mediterranean basin. This is an important geophysical result, since the ozone burden is large over this area, with impact on the radiative balance and air quality. 1 Measurements of OZone, water vapour, carbon monoxide and nitrogen oxides by in-service AIrbus airCraft (http://mozaic.aero.obs-mip.fr/web/).

2011 ◽  
Vol 11 (9) ◽  
pp. 26943-26997 ◽  
Author(s):  
A. Coman ◽  
G. Foret ◽  
M. Beekmann ◽  
M. Eremenko ◽  
G. Dufour ◽  
...  

Abstract. Partial lower tropospheric ozone columns provided by the IASI (Infrared Atmospheric Sounding Interferometer) instrument have been assimilated into a chemistry-transport model at continental scale (CHIMERE) using an Ensemble Kalman Filter (EnKF). Analyses are made for the month of July 2007 over the European domain. Launched in 2006, aboard the MetOp-A satellite, IASI shows high sensitivity for ozone in the free troposphere and low sensitivity at the ground; therefore it is important to evaluate if assimilation of these observations can improve free tropospheric ozone, and possibly surface ozone. The analyses are validated against independent ozone observations from sondes, MOZAIC1 aircraft and ground based stations (AIRBASE – the European Air quality dataBase) and compared with respect to the free run of CHIMERE. These comparisons show a decrease in error of 6 parts-per-billion (ppb) in the free troposphere over the Frankfurt area, and also a reduction of the root mean square error (respectively bias) at the surface of 19% (33%) for more than 90% of existing ground stations. This provides evidence of the potential of data assimilation of tropospheric IASI columns to better describe the tropospheric ozone distribution, including surface ozone, despite the lower sensitivity. The changes in concentration resulting from the observational constraints were quantified and several geophysical explanations for the findings of this study were drawn. The corrections were most pronounced over Italy and the Mediterranean region, on the average we noted an average reduction of 8–9 ppb in the free troposphere with respect to the free run, and still a reduction of 5.5 ppb at ground, likely due to a longer residence time of air masses in this part associated to the general circulation pattern (i.e. dominant western circulation) and to persistent anticyclonic conditions over the Mediterranean basin. This is an important geophysical result, since the ozone burden is large over this area, with impact on the radiative balance and air quality. 1 Measurements of OZone, water vapour, carbon monoxide and nitrogen oxides by in-service AIrbus airCraft ( http://mozaic.aero.obs-mip.fr/web/)


Elem Sci Anth ◽  
2019 ◽  
Vol 7 ◽  
Author(s):  
David Tarasick ◽  
Ian E. Galbally ◽  
Owen R. Cooper ◽  
Martin G. Schultz ◽  
Gerard Ancellet ◽  
...  

From the earliest observations of ozone in the lower atmosphere in the 19th century, both measurement methods and the portion of the globe observed have evolved and changed. These methods have different uncertainties and biases, and the data records differ with respect to coverage (space and time), information content, and representativeness. In this study, various ozone measurement methods and ozone datasets are reviewed and selected for inclusion in the historical record of background ozone levels, based on relationship of the measurement technique to the modern UV absorption standard, absence of interfering pollutants, representativeness of the well-mixed boundary layer and expert judgement of their credibility. There are significant uncertainties with the 19th and early 20th-century measurements related to interference of other gases. Spectroscopic methods applied before 1960 have likely underestimated ozone by as much as 11% at the surface and by about 24% in the free troposphere, due to the use of differing ozone absorption coefficients. There is no unambiguous evidence in the measurement record back to 1896 that typical mid-latitude background surface ozone values were below about 20 nmol mol–1, but there is robust evidence for increases in the temperate and polar regions of the northern hemisphere of 30–70%, with large uncertainty, between the period of historic observations, 1896–1975, and the modern period (1990–2014). Independent historical observations from balloons and aircraft indicate similar changes in the free troposphere. Changes in the southern hemisphere are much less. Regional representativeness of the available observations remains a potential source of large errors, which are difficult to quantify. The great majority of validation and intercomparison studies of free tropospheric ozone measurement methods use ECC ozonesondes as reference. Compared to UV-absorption measurements they show a modest (~1–5% ±5%) high bias in the troposphere, but no evidence of a change with time. Umkehr, lidar, and FTIR methods all show modest low biases relative to ECCs, and so, using ECC sondes as a transfer standard, all appear to agree to within one standard deviation with the modern UV-absorption standard. Other sonde types show an increase of 5–20% in sensitivity to tropospheric ozone from 1970–1995. Biases and standard deviations of satellite retrieval comparisons are often 2–3 times larger than those of other free tropospheric measurements. The lack of information on temporal changes of bias for satellite measurements of tropospheric ozone is an area of concern for long-term trend studies.


2016 ◽  
Vol 16 (21) ◽  
pp. 14025-14039 ◽  
Author(s):  
Dimitris Akritidis ◽  
Andrea Pozzer ◽  
Prodromos Zanis ◽  
Evangelos Tyrlis ◽  
Bojan Škerlak ◽  
...  

Abstract. We study the contribution of tropopause folds in the summertime pool of tropospheric ozone over the eastern Mediterranean and the Middle East (EMME) with the aid of the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model. Tropopause fold events in EMAC simulations were identified with a 3-D labeling algorithm that detects folds at grid points where multiple crossings of the dynamical tropopause are computed. Subsequently the events featuring the largest horizontal and vertical extent were selected for further study. For the selection of these events we identified a significant contribution of the stratospheric ozone reservoir to the high concentrations of ozone in the middle and lower free troposphere over the EMME. A distinct increase of ozone is found over the EMME in the middle troposphere during summer as a result of the fold activity, shifting towards the southeast and decreasing altitude. We find that the interannual variability of near-surface ozone over the eastern Mediterranean (EM) during summer is related to that of both tropopause folds and ozone in the free troposphere.


2009 ◽  
Vol 9 (8) ◽  
pp. 2695-2714 ◽  
Author(s):  
M. Demuzere ◽  
R. M. Trigo ◽  
J. Vila-Guerau de Arellano ◽  
N. P. M. van Lipzig

Abstract. In spite of the strict EU regulations, concentrations of surface ozone and PM10 often exceed the pollution standards for the Netherlands and Europe. Their concentrations are controlled by (precursor) emissions, social and economic developments and a complex combination of meteorological actors. This study tackles the latter, and provides insight in the meteorological processes that play a role in O3 and PM10 levels in rural mid-latitudes sites in the Netherlands. The relations between meteorological actors and air quality are studied on a local scale based on observations from four rural sites and are determined by a comprehensive correlation analysis and a multiple regression (MLR) analysis in 2 modes, with and without air quality variables as predictors. Furthermore, the objective Lamb Weather Type approach is used to assess the influence of the large-scale circulation on air quality. Keeping in mind its future use in downscaling future climate scenarios for air quality purposes, special emphasis is given to an appropriate selection of the regressor variables readily available from operational meteorological forecasts or AOGCMs (Atmosphere-Ocean coupled General Circulation Models). The regression models perform satisfactory, especially for O3, with an (R2 of 57.0% and 25.0% for PM10. Including previous day air quality information increases significantly the models performance by 15% (O3) and 18% (PM10). The Lamb weather types show a seasonal distinct pattern for high (low) episodes of average O3 and PM10 concentrations, and these are clear related with the meteorology-air quality correlation analysis. Although using a circulation type approach can provide important additional physical relations forward, our analysis reveals the circulation method is limited in terms of short-term air quality forecast for both O3 and PM10 (R2 between 0.12 and 23%). In summary, it is concluded that the use of a regression model is more promising for short-term downscaling from climate scenarios than the use of a weather type classification approach.


2014 ◽  
Vol 14 (8) ◽  
pp. 4079-4086 ◽  
Author(s):  
H. Zhang ◽  
S. Wu ◽  
Y. Huang ◽  
Y. Wang

Abstract. There has been significant stratospheric ozone depletion since the late 1970s due to ozone-depleting substances (ODSs). With the implementation of the Montreal Protocol and its amendments and adjustments, stratospheric ozone is expected to recover towards its pre-1980 level in the coming decades. In this study, we examine the implications of stratospheric ozone recovery for the tropospheric chemistry and ozone air quality with a global chemical transport model (GEOS-Chem). With a full recovery of the stratospheric ozone, the projected increases in ozone column range from 1% over the low latitudes to more than 10% over the polar regions. The sensitivity factor of troposphere ozone photolysis rate, defined as the percentage changes in surface ozone photolysis rate for 1% increase in stratospheric ozone column, shows significant seasonal variation but is always negative with absolute value larger than one. The expected stratospheric ozone recovery is found to affect the tropospheric ozone destruction rates much more than the ozone production rates. Significant decreases in surface ozone photolysis rates due to stratospheric ozone recovery are simulated. The global average tropospheric OH decreases by 1.7%, and the global average lifetime of tropospheric ozone increases by 1.5%. The perturbations to tropospheric ozone and surface ozone show large seasonal and spatial variations. General increases in surface ozone are calculated for each season, with increases by up to 0.8 ppbv in the remote areas. Increases in ozone lifetime by up to 13% are found in the troposphere. The increased lifetimes of tropospheric ozone in response to stratospheric ozone recovery enhance the intercontinental transport of ozone and global pollution, in particular for the summertime. The global background ozone attributable to Asian emissions is calculated to increase by up to 15% or 0.3 ppbv in the Northern Hemisphere in response to the projected stratospheric ozone recovery.


2007 ◽  
Vol 46 (7) ◽  
pp. 945-960 ◽  
Author(s):  
Ho-Chun Huang ◽  
Xin-Zhong Liang ◽  
Kenneth E. Kunkel ◽  
Michael Caughey ◽  
Allen Williams

Abstract The impacts of air pollution on the environment and human health could increase as a result of potential climate change. To assess such possible changes, model simulations of pollutant concentrations need to be performed at climatic (seasonal) rather than episodic (days) time scales, using future climate projections from a general circulation model. Such a modeling system was employed here, consisting of a regional climate model (RCM), an emissions model, and an air quality model. To assess overall model performance with one-way coupling, this system was used to simulate tropospheric ozone concentrations in the midwestern and northeastern United States for summer seasons between 1995 and 2000. The RCM meteorological conditions were driven by the National Centers for Environmental Prediction/Department of Energy global reanalysis (R-2) using the same procedure that integrates future climate model projections. Based on analyses for several urban and rural areas and regional domains, fairly good agreement with observations was found for the diurnal cycle and for several multiday periods of high ozone episodes. Even better agreement occurred between monthly and seasonal mean quantities of observed and model-simulated values. This is consistent with an RCM designed primarily to produce good simulations of monthly and seasonal mean statistics of weather systems.


2013 ◽  
Vol 13 (8) ◽  
pp. 22025-22058 ◽  
Author(s):  
P. Zanis ◽  
P. Hadjinicolaou ◽  
A. Pozzer ◽  
E. Tyrlis ◽  
S. Dafka ◽  
...  

Abstract. Observations show that the Mediterranean troposphere is characterized by a marked enhancement in summertime ozone with a maximum over the Eastern Mediterranean. This has been linked to enhanced ozone photochemical production and subsidence under cloud-free anticyclonic conditions. The Eastern Mediterranean region has among the highest levels of background tropospheric ozone around the globe and it can be considered as a global air pollution hotspot. A 12 yr climatological analysis (1998–2009) of free tropospheric ozone was carried out over the region based on ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-interim reanalysis data and simulations with the EMAC (ECHAM5-MESSy for Atmospheric Chemistry) atmospheric chemistry climate model. EMAC is nudged towards the ECMWF analysis data and includes a stratospheric ozone tracer. A characteristic summertime pool with high ozone concentrations is found in the middle troposphere over the Eastern Mediterranean/Middle East (EMME) by ERA-interim ozone data, which is supported by Tropospheric Emission Spectrometer (TES) satellite ozone data and simulations with EMAC. The enhanced ozone over the EMME is a robust feature, propagating down to lower free tropospheric levels. The investigation of ozone in relation to potential vorticity and water vapour and the stratospheric ozone tracer indicates that the dominant mechanism causing the free tropospheric ozone pool is downward transport from the upper troposphere and lower stratosphere associated with the enhanced subsidence and the limited outflow transport that dominates the summertime EMME circulation. The implications of these summertime high free tropospheric ozone values on the seasonal cycle of near surface ozone over the Mediterranean are discussed.


2013 ◽  
Vol 13 (8) ◽  
pp. 21125-21157 ◽  
Author(s):  
M. M. Fry ◽  
M. D. Schwarzkopf ◽  
Z. Adelman ◽  
J. J. West

Abstract. Non-methane volatile organic compounds (NMVOCs) influence air quality and global climate change through their effects on secondary air pollutants and climate forcers. Here we simulate the air quality and radiative forcing (RF) impacts of changes in ozone, methane, and sulfate from halving anthropogenic NMVOC emissions globally and from 10 regions individually, using a global chemical transport model and a standalone radiative transfer model. Halving global NMVOC emissions decreases global annual average tropospheric methane and ozone by 36.6 ppbv and 3.3 Tg, respectively, and surface ozone by 0.67 ppbv. All regional reductions slow the production of PAN, resulting in regional to intercontinental PAN decreases and regional NOx increases. These NOx increases drive tropospheric ozone increases nearby or downwind of source regions in the Southern Hemisphere (South America, Southeast Asia, Africa, and Australia). Some regions' NMVOC emissions contribute importantly to air pollution in other regions, such as East Asia, Middle East, and Europe, whose impact on US surface ozone is 43%, 34%, and 34% of North America's impact. Global and regional NMVOC reductions produce widespread negative net RFs (cooling) across both hemispheres from tropospheric ozone and methane decreases, and regional warming and cooling from changes in tropospheric ozone and sulfate (via several oxidation pathways). The total global net RF for NMVOCs is estimated as 0.0277 W m−2 (~1.8% of CO2 RF since the preindustrial). The 100 yr and 20 yr global warming potentials (GWP100, GWP20) are 2.36 and 5.83 for the global reduction, and 0.079 to 6.05 and −1.13 to 18.9 among the 10 regions. The NMVOC RF and GWP estimates are generally lower than previously modeled estimates, due to differences among models in ozone, methane, and sulfate sensitivities, and the climate forcings included in each estimate. Accounting for a~fuller set of RF contributions may change the relative magnitude of each region's impacts. The large variability in the RF and GWP of NMVOCs among regions suggest that regionally-specific metrics may be necessary to include NMVOCs in multi-gas climate trading schemes.


2014 ◽  
Vol 14 (2) ◽  
pp. 523-535 ◽  
Author(s):  
M. M. Fry ◽  
M. D. Schwarzkopf ◽  
Z. Adelman ◽  
J. J. West

Abstract. Non-methane volatile organic compounds (NMVOCs) influence air quality and global climate change through their effects on secondary air pollutants and climate forcers. Here we simulate the air quality and radiative forcing (RF) impacts of changes in ozone, methane, and sulfate from halving anthropogenic NMVOC emissions globally and from 10 regions individually, using a global chemical transport model and a standalone radiative transfer model. Halving global NMVOC emissions decreases global annual average tropospheric methane and ozone by 36.6 ppbv and 3.3 Tg, respectively, and surface ozone by 0.67 ppbv. All regional reductions slow the production of peroxyacetyl nitrate (PAN), resulting in regional to intercontinental PAN decreases and regional NOx increases. These NOx increases drive tropospheric ozone increases nearby or downwind of source regions in the Southern Hemisphere (South America, Southeast Asia, Africa, and Australia). Some regions' NMVOC emissions contribute importantly to air pollution in other regions, such as East Asia, the Middle East, and Europe, whose impact on US surface ozone is 43%, 34%, and 34% of North America's impact. Global and regional NMVOC reductions produce widespread negative net RFs (cooling) across both hemispheres from tropospheric ozone and methane decreases, and regional warming and cooling from changes in tropospheric ozone and sulfate (via several oxidation pathways). The 100 yr and 20 yr global warming potentials (GWP100, GWP20) are 2.36 and 5.83 for the global reduction, and 0.079 to 6.05 and −1.13 to 18.9 among the 10 regions. The NMVOC RF and GWP estimates are generally lower than previously modeled estimates, due to the greater NMVOC/NOx emissions ratios simulated, which result in less sensitivity to NMVOC emissions changes and smaller global O3 burden responses, in addition to differences in the representation of NMVOCs and oxidation chemistry among models. Accounting for a fuller set of RF contributions may change the relative magnitude of each region's impacts. The large variability in the RF and GWP of NMVOCs among regions suggest that regionally specific metrics may be necessary to include NMVOCs in multi-gas climate trading schemes.


2016 ◽  
Vol 16 (23) ◽  
pp. 14997-15010 ◽  
Author(s):  
Colette L. Heald ◽  
Jeffrey A. Geddes

Abstract. Anthropogenic land use change (LUC) since preindustrial (1850) has altered the vegetation distribution and density around the world. We use a global model (GEOS-Chem) to assess the attendant changes in surface air quality and the direct radiative forcing (DRF). We focus our analysis on secondary particulate matter and tropospheric ozone formation. The general trend of expansion of managed ecosystems (croplands and pasturelands) at the expense of natural ecosystems has led to an 11 % decline in global mean biogenic volatile organic compound emissions. Concomitant growth in agricultural activity has more than doubled ammonia emissions and increased emissions of nitrogen oxides from soils by more than 50 %. Conversion to croplands has also led to a widespread increase in ozone dry deposition velocity. Together these changes in biosphere–atmosphere exchange have led to a 14 % global mean increase in biogenic secondary organic aerosol (BSOA) surface concentrations, a doubling of surface aerosol nitrate concentrations, and local changes in surface ozone of up to 8.5 ppb. We assess a global mean LUC-DRF of +0.017, −0.071, and −0.01 W m−2 for BSOA, nitrate, and tropospheric ozone, respectively. We conclude that the DRF and the perturbations in surface air quality associated with LUC (and the associated changes in agricultural emissions) are substantial and should be considered alongside changes in anthropogenic emissions and climate feedbacks in chemistry–climate studies.


Sign in / Sign up

Export Citation Format

Share Document