scholarly journals Nudging technique for scale bridging in air quality/climate atmospheric composition modelling

2012 ◽  
Vol 12 (8) ◽  
pp. 3677-3685 ◽  
Author(s):  
A. Maurizi ◽  
F. Russo ◽  
M. D'Isidoro ◽  
F. Tampieri

Abstract. The interaction between air quality and climate involves dynamical scales that cover a very wide range. Bridging these scales in numerical simulations is fundamental in studies devoted to megacity/hot-spot impacts on larger scales. A technique based on nudging is proposed as a bridging method that can couple different models at different scales. Here, nudging is used to force low resolution chemical composition models with a run of a high resolution model on a critical area. A one-year numerical experiment focused on the Po Valley hot spot is performed using the BOLCHEM model to asses the method. The results show that the model response is stable to perturbation induced by the nudging and that, taking the high resolution run as a reference, performances of the nudged run increase with respect to the non-forced run. The effect outside the forcing area depends on transport and is significant in a relevant number of events although it becomes weak on seasonal or yearly basis.

2011 ◽  
Vol 11 (6) ◽  
pp. 17177-17199 ◽  
Author(s):  
A. Maurizi ◽  
F. Russo ◽  
M. D'Isidoro ◽  
F. Tampieri

Abstract. The interaction between air quality and climate involves dynamical scales that cover an immensely wide range. Bridging these scales in numerical simulations is fundamental in studies devoted to megacity/hot-spot impacts on climate. The nudging technique is proposed as a bridging method that can couple different models at different scales. Here, nudging is used to force low resolution chemical composition models using a high resolution run on critical areas. A one-year numerical experiment focused on the Po Valley hot spot is performed using the BOLCHEM model to asses the method. The results show that the model response is stable to perturbation induced by the nudging and that, if a high resolution run is taken as a reference, there is an increase in model skills of low resolution run when the technique is applied. This improvement depends on the species and the season. The effect spreads outside the forcing area and remains noticeable over an extension about 9 times larger.


2019 ◽  
Vol 23 (3) ◽  
pp. 1593-1609 ◽  
Author(s):  
Joost Buitink ◽  
Remko Uijlenhoet ◽  
Adriaan J. Teuling

Abstract. Hydrological models are being applied for impact assessment across a wide range of resolutions. In this study, we quantify the effect of model resolution on the simulated hydrological response in five mesoscale basins in the Swiss Alps using the distributed hydrological model Spatial Processes in Hydrology (SPHY). We introduce a new metric to compare a range of values resulting from a distributed model with a single value: the density-weighted distance (DWD). Model simulations are performed at two different spatial resolutions, matching common practices in hydrology: 500 m × 500 m matching regional-scale models, and 40 km × 40 km matching global-scale modeling. We investigate both the intra-basin response in seasonal streamflow and evapotranspiration from the high-resolution model and the difference induced by the two different spatial resolutions, with a focus on four seasonal extremes, selected based on temperature and precipitation. Results from the high-resolution model show that the intra-basin response covers a surprisingly large range of anomalies and show that it is not uncommon to have both extreme positive and negative flux anomalies occurring simultaneously within a catchment. The intra-basin response was grouped by land cover, where different dominant runoff-generating processes are driving the differences between these groups. The low-resolution model failed to capture the diverse and contrasting response from the high-resolution model, since neither the complex topography nor land cover classes were properly represented. DWD values show that, locally, the hydrological response simulated with a high-resolution model can be a lot more extreme than a low-resolution model might indicate, which has important implications for global or continental scale assessments carried out at coarse grids of 0.5∘×0.5∘ or 0.25∘×0.25∘ resolution.


2019 ◽  
Vol 101 ◽  
pp. 03004
Author(s):  
Rohit Srivastava ◽  
Ruchita Shah

Global warming is an increase in average global temperature of the earth which lead to climate change. Heterogeneity in the earth-atmosphere system becomes difficult to capture at low resolution (1°x1°) by satellite. Such features may be captured by using high resolution model such as regional climate model (0.5°x 0.5°). This type of study is quite important for a monsoon dominated country like India where Indo-Gangetic Plains (IGP) faces highest heterogeneity due to its geographic location. Present study compares high resolution model features with satellite data over IGP for monsoon season during a normal rainfall year 2010 to understand the actual performance of model. Almost whole IGP simulates relative humidity (RH) with wide range (~50-100%), whereas satellite shows it with narrow range (~60-80%) during September, 2010. Thus model is able to pick the features which were missed by satellite. Hence further model simulation extends over India and adjoining oceanic regions which simulates data of southwest monsoon with high (~70-100%) RH, high (~0.4-0.7) cloud fraction (CF) and low (~80-200 W/m2) outgoing longwave radiation (OLR) over Arabian Sea during June, 2010. Such type of study can be useful to understand heterogeneity at regional scale with the help of high resolution model generated data.


2018 ◽  
Author(s):  
Junhua Zhang ◽  
Michael D. Moran ◽  
Qiong Zheng ◽  
Paul A. Makar ◽  
Pegah Baratzadeh ◽  
...  

Abstract. The oil sands of Alberta, Canada are classified as unconventional oil, but they are also the third-largest oil reserves in the world, behind only Venezuela and Saudi Arabia. We describe here a six-year effort to improve the emissions data used for air quality (AQ) modelling of the roughly 100 km x 100 km oil extraction and processing industrial complex operating in the Athabasca Oil Sands Region (AOSR) of north-eastern Alberta. The objective of this work was to review the available emissions data, provide information for comparison with observation-based emissions estimates, and generate model-ready emissions files for the Global Environmental Multiscale–Modelling Air-quality and CHemistry (GEM-MACH) AQ modelling system for application to the AOSR. GEM-MACH was used to produce nested AQ forecasts during an AQ field study carried out in the AOSR in summer 2013 as well as ongoing experimental forecasts since then and retrospective model simulations and analyses for the field-study period. This paper discusses the generation of GEM-MACH emissions input files, in particular for a high-resolution model domain with 2.5-km grid spacing covering much of western Canada and centred over the AOSR. Prior to the field study, ten pre-2013 national, provincial, or sub-provincial emissions inventories for up to seven criteria-air-contaminant species (NOx, VOC, SO2, NH3, CO, PM2.5, and PM10) that covered the AOSR study area and that had been compiled for various purposes were reviewed, and then a detailed hybrid emissions inventory was created by combining the best available emissions data from some of these ten inventories. After the field study, additional sources of emissions-related data became available, including 2013 hourly SO2 and NOx emissions and stack characteristics for large point sources measured by Continuous Emission Monitoring Systems, 2013-specific national inventories, daily reports of SO2 emissions from one AOSR facility for a one-week period during the field campaign when that facility experienced upset conditions, aircraft measurements of VOC and PM2.5 concentrations from the 2013 field campaign and derived estimates of their emissions, and measurements of chemical composition of dust collected from various AOSR sites. These new data were used to generate updated emissions input files for various post-campaign GEM-MACH sensitivity studies. Their inclusion resulted in some significant emissions revisions, including a reduction in total VOC and SO2 emissions from surface mining facilities of about 40 % and 20 %, respectively, and a ten-fold increase in PM2.5 emissions based on aircraft observations. In addition, standard emissions processing approaches could not provide an accurate representation of emissions from such large, unconventional emissions sources as AOSR surface mines. In order to generate more accurate high-resolution, model-ready emissions files, AOSR-specific improvements were made to the emissions processing methodology. To account for the urban-scale spatial extent of the AOSR mining facilities and the high-resolution 2.5-km model grid, novel facility-specific gridded spatial surrogate fields were generated using spatial information from GIS (geographic information system) shapefiles and satellite images to allocate emissions spatially within each mining facility. Facility- and process-specific temporal profiles and VOC speciation profiles were also developed. The pre-2013 vegetation and land-use data bases normally used to estimate biogenic emissions and meteorological surface properties were modified to account for the rapid change of land use in the study area due to marked, year-by-year changes in surface mining activities, including the 2013 opening of a new mine. Lastly, mercury emissions data were also processed to support AOSR mercury modelling activities. The combination of emissions inventory updates and methodological improvements to emissions processing has resulted in a more representative and more accurate set of emissions input files to support AQ modelling to predict the ecosystem impacts of AOSR air pollutant emissions. Seven other papers in this special issue used some of these new sets of emissions input files.


2013 ◽  
Vol 140 (681) ◽  
pp. 1189-1197 ◽  
Author(s):  
J. A. Waller ◽  
S. L. Dance ◽  
A. S. Lawless ◽  
N. K. Nichols ◽  
J. R. Eyre

2002 ◽  
Vol 5 (3) ◽  
pp. 212-212 ◽  
Author(s):  
U. Tiede ◽  
A. Pommert ◽  
B. Pflesser ◽  
E. Richter ◽  
M. Riemer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document