scholarly journals Vertical structure of MJO-related subtropical ozone variations from MLS, TES, and SHADOZ data

2012 ◽  
Vol 12 (1) ◽  
pp. 425-436 ◽  
Author(s):  
K.-F. Li ◽  
B. Tian ◽  
D. E. Waliser ◽  
M. J. Schwartz ◽  
J. L. Neu ◽  
...  

Abstract. Tian et al. (2007) found that the MJO-related total column ozone (O3) anomalies of 10 DU (peak-to-trough) are mainly evident over the subtropics and dynamically driven by the vertical movement of the subtropical tropopause layer. It was then hypothesized that the subtropical total column O3 anomalies are primarily associated with the O3 variability in the stratosphere rather the troposphere. In this paper, we investigate the vertical structure of MJO-related subtropical O3 variations using the vertical O3 profiles from the Aura Microwave Limb Sounder (MLS) and Tropospheric Emission Spectrometer (TES), as well as in-situ measurements by the Southern Hemisphere Additional Ozonesondes (SHADOZ) project. Our analysis indicates that the subtropical O3 anomalies maximize approximately in the lower stratosphere (60–100 hPa). Furthermore, the spatial-temporal patterns of the subtropical O3 anomalies in the lower stratosphere are very similar to that of the total column. In particular, they are both dynamically driven by the vertical movement of subtropical tropopause. The subtropical partial O3 column anomalies between 30–200 hPa accounts for more than 50 % of the total O3 column anomalies. TES measurements show that at most 27 % of the total O3 column anomalies are contributed by the tropospheric components. This indicates that the subtropical total column O3 anomalies are mostly from the O3 anomalies in the lower stratosphere, which supports the hypothesis of Tian et al. (2007). The strong connection between the intraseasonal subtropical stratospheric O3 variations and the MJO implies that the stratospheric O3 variations may be predictable with similar lead times over the subtropics. Future work could involve a similar study or an O3 budget analysis using a sophisticated chemical transport model in the near-equatorial regions where the observed MJO signals of total column O3 are weak.

2011 ◽  
Vol 11 (8) ◽  
pp. 24503-24533 ◽  
Author(s):  
K.-F. Li ◽  
B. Tian ◽  
D. E. Waliser ◽  
M. J. Schwartz ◽  
J. L. Neu ◽  
...  

Abstract. Tian et al. (2007) found that the MJO-related total column ozone (O3) anomalies of 10 DU (peak-to-trough) are mainly evident over the subtropics and dynamically driven by the vertical movement of the subtropical tropopause layer. It was then hypothesized that the subtropical total column O3 anomalies are primarily associated with the O3 variability in the stratosphere rather the troposphere. In this paper, we investigate the vertical structure of MJO-related subtropical O3 variations using the vertical O3 profiles from the Aura Microwave Limb Sounder (MLS) and Tropospheric Emission Spectrometer (TES), as well as in situ measurements by the Southern Hemisphere Additional Ozonesondes (SHADOZ) project. Our analysis indicates that the subtropical O3 anomalies maximize approximately in the lower stratosphere (60–100 hPa). Furthermore, the spatial-temporal patterns of the subtropical O3 anomalies in the lower stratosphere are very similar to that of the total column. In particular, they are both dynamically driven by the vertical movement of subtropical tropopause. The subtropical partial O3 column anomalies between 30–200 hPa accounts for more than 50 % of the total O3 column anomalies. TES measurements show that at most 30 % of the total O3 column anomalies are contributed by the tropospheric components. This indicates that the subtropical total column O3 anomalies are mostly from the O3 anomalies in the lower stratosphere, which supports the hypothesis of Tian et al. (2007). The strong connection between the intraseasonal subtropical stratospheric O3 variations and the MJO implies that the stratospheric O3 variations may be predictable with similar lead times over the subtropics. Future work could involve a similar study or an O3 budget analysis using a sophisticated chemical transport model in the near-equatorial regions where the observed MJO signals of total column O3 are weak.


2006 ◽  
Vol 6 (2) ◽  
pp. 525-537 ◽  
Author(s):  
S. Guillas ◽  
G. C. Tiao ◽  
D. J. Wuebbles ◽  
A. Zubrow

Abstract. In this paper, we introduce a statistical method for examining and adjusting chemical-transport models. We illustrate the findings with total column ozone predictions, based on the University of Illinois at Urbana-Champaign 2-D (UIUC 2-D) chemical-transport model of the global atmosphere. We propose a general diagnostic procedure for the model outputs in total ozone over the latitudes ranging from 60° South to 60° North to see if the model captures some typical patterns in the data. The method proceeds in two steps to avoid possible collinearity issues. First, we regress the measurements given by a cohesive data set from the SBUV(/2) satellite system on the model outputs with an autoregressive noise component. Second, we regress the residuals of this first regression on the solar flux, the annual cycle, the Antarctic or Arctic Oscillation, and the Quasi Biennial Oscillation. If the coefficients from this second regression are statistically significant, then they mean that the model did not simulate properly the pattern associated with these factors. Systematic anomalies of the model are identified using data from 1979 to 1995, and statistically corrected afterwards. The 1996–2003 validation sample confirms that the combined approach yields better predictions than the direct UIUC 2-D outputs.


2005 ◽  
Vol 5 (5) ◽  
pp. 10421-10453 ◽  
Author(s):  
S. Guillas ◽  
G. C. Tiao ◽  
D. J. Wuebbles ◽  
A. Zubrow

Abstract. In this paper, we introduce a statistical method for examining and adjusting chemical-transport models. We illustrate the findings with total column ozone predictions, based on the University of Illinois at Urbana-Champaign 2-D (UIUC 2-D) chemical-transport model of the global atmosphere. We propose a general diagnostic procedure for the model outputs in total ozone over the latitudes ranging from 60° South to 60° North to see if the model captures some typical patterns in the data. The method proceeds in two steps to avoid possible collinearity issues. First, we regress the measurements given by a cohesive data set from the SBUV(/2) satellite system on the model outputs with an autoregressive noise component. Second, we regress the residuals of this first regression on the solar flux, the annual cycle, the Antarctic or Arctic Oscillation, and the Quasi Biennial Oscillation. If the coefficients from this second regression are statistically significant, then they mean that the model did not simulate properly the pattern associated with these factors. Systematic anomalies of the model are identified using data from 1979 to 1995, and statistically corrected afterwards. The 1996–2003 validation sample confirms that the combined approach yields better predictions than the direct UIUC 2-D outputs.


2005 ◽  
Vol 62 (3) ◽  
pp. 801-811 ◽  
Author(s):  
S. Kondragunta ◽  
L. E. Flynn ◽  
A. Neuendorffer ◽  
A. J. Miller ◽  
C. Long ◽  
...  

Abstract Ozone estimates from observations by the NOAA-16 Solar Backscattered Ultraviolet (SBUV/2) instrument and Television Infrared Observation Satellite (TIROS-N) Operational Vertical Sounder (TOVS) are used to describe the vertical structure of ozone in the anomalous 2002 polar vortex. The SBUV/2 total ozone maps show that the ozone hole was pushed off the Pole and split into two halves due to a split in the midstratospheric polar vortex in late September. The vortex split and the associated transport of high ozone from midlatitudes to the polar region reduced the ozone hole area from 18 × 106 km2 on 20 September to 3 × 106 km2 on 27 September 2002. A 23-yr time series of SBUV/2 daily zonal mean total ozone amounts between 70° and 80°S shows record high values [385 Dobson units (DU)] during the late-September 2002 warming event. The transport and descent of high ozone from low latitudes to high latitudes between 60 and 15 mb contributed to the unusual increase in total column ozone and a small ozone hole estimated using the standard criterion (area with total ozone < 220 DU). In contrast, TOVS observations show an ozone-depleted region between 0 and 24 km, indicating that ozone destruction was present in the elongated but unsplit vortex in the lower stratosphere. During the warming event, the low-ozone regions in the middle and upper stratosphere were not vertically aligned with the low-ozone regions in the upper troposphere and lower stratosphere. This offset in the vertical distribution of ozone resulted in higher total column ozone masking the ozone depletion in the lower stratosphere and resulting in a smaller ozone hole size estimate from satellite total ozone data.


2003 ◽  
Vol 3 (1) ◽  
pp. 1081-1107 ◽  
Author(s):  
M. P. Chipperfield

Abstract. We have used a 3D off-line chemical transport model (CTM) to study the causes of the observed changes in ozone in the mid-high latitude lower stratosphere from 1979–1998. The model was forced by European Centre for Medium Range Weather Forecasts (ECMWF) analyses and contains a detailed chemistry scheme. A series of model runs were performed at a horizontal resolution of 7.5°×7.5° and covered the domain from about 12 km to 30 km. The basic model performs well in reproducing the decadal evolution of the springtime depletion in the northern hemisphere (NH) and southern hemisphere (SH) high latitudes in the 1980s and early 1990s. After about 1994 the modelled interannual variability does not match the observations as well, which is probably due in part to changes in the operational ECMWF analyses – which places limits on using this dataset to diagnose dynamical trends. For mid-latitudes (35°–60°) the basic model reproduces the observed column ozone decreases from 1980 until the early 1990s. Model experiments show that the halogen trends appear to dominate this modelled decrease and of this around 30–50% is due to high-latitude processing on polar stratospheric clouds (PSCs). Dynamically induced ozone variations in the model correlate with observations over the timescale of a few years. Large discrepancies between the modelled and observed variations in the mid 1980s and mid 1990s can be largely resolved by assuming that the 11-year solar cycle (not explicitly included in the 3D model) causes a 2% (min-max) change in mid-latitude column ozone.


2018 ◽  
Vol 18 (2) ◽  
pp. 1379-1394 ◽  
Author(s):  
William T. Ball ◽  
Justin Alsing ◽  
Daniel J. Mortlock ◽  
Johannes Staehelin ◽  
Joanna D. Haigh ◽  
...  

Abstract. Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer–Dobson circulation (BDC), forming a protective ozone layer around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60° S and 60° N outside the polar regions (60–90°). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60° S and 60° N has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60° S and 60° N. We find that total column ozone between 60° S and 60° N appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.


2018 ◽  
Author(s):  
Yves J. Rochon ◽  
Michael Sitwell ◽  
Young-Min Cho

Abstract. The impact of assimilating total column ozone datasets from single and multiple satellite data sources with and without bias correction has been examined with a version of the Environment and Climate Change Canada variational assimilation and forecasting system. The assimilated and evaluated data sources include the Global Ozone Monitoring Experiment-2 instruments on the MetOp-A and MetOp-B satellites (GOME-2A and GOME-2B), the total column ozone mapping instrument of the Ozone Mapping Profiler Suite (OMPS-NM) on the Suomi National Polar-orbiting Partnership (S-NPP) satellite, and the Ozone Monitoring Instrument (OMI) instrument on the Aura research satellite. Ground-based Brewer and Dobson spectrophotometers, and filter ozonometers, as well as the Solar Backscatter Ultraviolet satellite instrument (SBUV/2), served as independent validation sources for total column ozone. Regional and global mean differences of the OMI-TOMS data with measurements from the three ground-based instrument types for the three evaluated two month periods were found to be within 1 %, except for the polar regions with the largest differences from the comparatively small dataset in Antarctica exceeding 3 %. Values from SBUV/2 summed partial columns were typically larger than OMI-TOMS on average by 0.6 to 1.2 ± 0.7 %, with smaller differences than with ground-based over Antarctica. OMI-TOMS was chosen as the reference used in the bias correction instead of the ground-based observations due to OMI’s significantly better spatial and temporal coverage and interest in near-real time assimilation. Bias corrections as a function of latitude and solar zenith angle were performed with a two-week moving window using colocation with OMI-TOMS and three variants of differences with short-term forecasts. These approaches are shown to yield residual biases of less than 1 %, with the rare exceptions associated with bins with less data. These results were compared to a time-independent bias correction estimation that used colocations as a function of ozone effective temperature and solar zenith angle which, for the time period examined, resulted in larger changes in residual biases as a function of time for some cases. Assimilation experiments for the July-August 2014 period show a reduction of global and temporal mean biases for short-term forecasts relative to ground-based Brewer and Dobson data from a maximum of about 2.3 % in the absence of bias correction to less than 0.3 % in size when bias correction is included. Both temporally averaged and time varying mean differences of forecasts with OMI-TOMS are reduced to within 1 % for nearly all cases when bias corrected observations are assimilated for the latitudes where satellite data is present. The impact of bias correction on the standard deviations and anomaly correlation coefficients of forecast differences to OMI-TOMS is noticeable but small compared to the impact of introducing any total column ozone assimilation. The assimilation of total column ozone data can result in some improvement, as well as some deterioration, in the vertical structure of forecasts when comparing to Aura-MLS and ozonesonde profiles. The most significant improvement in the vertical domain from the assimilation of total column ozone alone is seen in the anomaly correlation coefficients in the tropical lower stratosphere, which increases from a minimum of 0.1 to about 0.6. Nonetheless, it is made evident that the quality of the vertical structure is most improved when also assimilating ozone profile data, which only weakly affects the total column short-term forecasts.


2010 ◽  
Vol 10 (19) ◽  
pp. 9451-9472 ◽  
Author(s):  
V. Eyring ◽  
I. Cionni ◽  
G. E. Bodeker ◽  
A. J. Charlton-Perez ◽  
D. E. Kinnison ◽  
...  

Abstract. Projections of stratospheric ozone from a suite of chemistry-climate models (CCMs) have been analyzed. In addition to a reference simulation where anthropogenic halogenated ozone depleting substances (ODSs) and greenhouse gases (GHGs) vary with time, sensitivity simulations with either ODS or GHG concentrations fixed at 1960 levels were performed to disaggregate the drivers of projected ozone changes. These simulations were also used to assess the two distinct milestones of ozone returning to historical values (ozone return dates) and ozone no longer being influenced by ODSs (full ozone recovery). The date of ozone returning to historical values does not indicate complete recovery from ODSs in most cases, because GHG-induced changes accelerate or decelerate ozone changes in many regions. In the upper stratosphere where CO2-induced stratospheric cooling increases ozone, full ozone recovery is projected to not likely have occurred by 2100 even though ozone returns to its 1980 or even 1960 levels well before (~2025 and 2040, respectively). In contrast, in the tropical lower stratosphere ozone decreases continuously from 1960 to 2100 due to projected increases in tropical upwelling, while by around 2040 it is already very likely that full recovery from the effects of ODSs has occurred, although ODS concentrations are still elevated by this date. In the midlatitude lower stratosphere the evolution differs from that in the tropics, and rather than a steady decrease in ozone, first a decrease in ozone is simulated from 1960 to 2000, which is then followed by a steady increase through the 21st century. Ozone in the midlatitude lower stratosphere returns to 1980 levels by ~2045 in the Northern Hemisphere (NH) and by ~2055 in the Southern Hemisphere (SH), and full ozone recovery is likely reached by 2100 in both hemispheres. Overall, in all regions except the tropical lower stratosphere, full ozone recovery from ODSs occurs significantly later than the return of total column ozone to its 1980 level. The latest return of total column ozone is projected to occur over Antarctica (~2045–2060) whereas it is not likely that full ozone recovery is reached by the end of the 21st century in this region. Arctic total column ozone is projected to return to 1980 levels well before polar stratospheric halogen loading does so (~2025–2030 for total column ozone, cf. 2050–2070 for Cly+60×Bry) and it is likely that full recovery of total column ozone from the effects of ODSs has occurred by ~2035. In contrast to the Antarctic, by 2100 Arctic total column ozone is projected to be above 1960 levels, but not in the fixed GHG simulation, indicating that climate change plays a significant role.


2010 ◽  
Vol 10 (5) ◽  
pp. 11659-11710 ◽  
Author(s):  
V. Eyring ◽  
I. Cionni ◽  
G. E. Bodeker ◽  
A. J. Charlton-Perez ◽  
D. E. Kinnison ◽  
...  

Abstract. Projections of stratospheric ozone from a suite of chemistry-climate models (CCMs) have been analyzed. In addition to a reference simulation where anthropogenic halogenated ozone depleting substances (ODSs) and greenhouse gases (GHGs) vary with time, sensitivity simulations with either ODSs or GHGs concentrations fixed at 1960 levels were performed to disaggregate the drivers of projected ozone changes. These simulations were also used to assess the two distinct milestones of ozone returning to historical values (ozone return dates) and ozone no longer being influenced by ODSs (full ozone recovery). These two milestones are different. The date of ozone returning to historical values does not indicate complete recovery from ODSs in most cases, because GHG induced changes accelerate or decelerate ozone changes in many regions. In the upper stratosphere where GHG induced stratospheric cooling increases ozone, full ozone recovery has not likely occurred by 2100 while ozone returns to its 1980 or even 1960 levels well before (~2025 and 2040, respectively). In contrast, in the tropical lower stratosphere ozone decreases continuously from 1960 to 2100 due to projected increases in tropical upwelling, while by around 2040 it is already very likely that full recovery from the effects of ODSs has occurred, although ODS concentrations are still elevated by this date. In the lower midlatitude stratosphere the evolution differs from that in the tropics, and rather than a steady decrease of ozone, first a decrease of ozone is simulated between 1960 and 2000, which is then followed by a steady increase throughout the 21st century. Ozone in the lower stratosphere midlatitudes returns to its 1980 levels ${\\sim}$2045 in the NH and ~2055 in the SH, and full ozone recovery is likely reached by 2100 in both hemispheres. Overall, in all regions except the tropical lower stratosphere, full ozone recovery from ODSs occurs significantly later than the return of total column ozone to its 1980 level. The latest return of total column ozone is projected to occur over Antarctica (~2050–2060) whereas it is not likely that full ozone recovery is reached by the end of the 21st century in this region. Arctic total column ozone is projected to return to 1980 levels well before Cly does so (~2020–2030) and while it is likely that full recovery of ozone from the effects of ODSs has occurred by ~2035, at no time before 2100 is it very likely that full recovery has occurred. In contrast to the Antarctic, by 2100 Arctic total column ozone is projected to be above 1960 levels, but not in the fixed GHG simulation, indicating that climate change plays a significant role.


2003 ◽  
Vol 3 (4) ◽  
pp. 1253-1265 ◽  
Author(s):  
M. P. Chipperfield

Abstract. We have used a 3D off-line chemical transport model (CTM) to study the causes of the observed changes in ozone in the mid-high latitude lower stratosphere from 1979-1998. The model was forced by European Centre for Medium Range Weather Forecasts (ECMWF) analyses and contains a detailed chemistry scheme. A series of model runs were performed at a horizontal resolution of 7.5°x7.5° and covered the domain from about 12 km to 30 km. The basic model performs well in reproducing the decadal evolution of the springtime depletion of ozone in the northern hemisphere (NH) and southern hemisphere (SH) high latitudes in the 1980s and early 1990s. After about 1994 the modelled interannual variability does not match the observations as well, which is probably due in part to changes in the operational ECMWF analyses - which places limits on using this dataset to diagnose dynamical trends. For mid-latitudes (35°-60°) the basic model reproduces the observed column ozone decreases from 1980 until the early 1990s. Model experiments show that the halogen trends appear to dominate this modelled decrease and of this around 30-50% is due to high-latitude processing on polar stratospheric clouds (PSCs). Dynamically induced ozone variations in the model correlate with observations over the timescale of a few years. Large discrepancies between the modelled and observed variations in the mid 1980s and mid 1990s can be largely resolved by assuming that the 11-year solar cycle (not explicitly included in the 3D model) causes a 2% (min-max) change in mid-latitude column ozone.


Sign in / Sign up

Export Citation Format

Share Document