scholarly journals Vertical Structure of the Anomalous 2002 Antarctic Ozone Hole

2005 ◽  
Vol 62 (3) ◽  
pp. 801-811 ◽  
Author(s):  
S. Kondragunta ◽  
L. E. Flynn ◽  
A. Neuendorffer ◽  
A. J. Miller ◽  
C. Long ◽  
...  

Abstract Ozone estimates from observations by the NOAA-16 Solar Backscattered Ultraviolet (SBUV/2) instrument and Television Infrared Observation Satellite (TIROS-N) Operational Vertical Sounder (TOVS) are used to describe the vertical structure of ozone in the anomalous 2002 polar vortex. The SBUV/2 total ozone maps show that the ozone hole was pushed off the Pole and split into two halves due to a split in the midstratospheric polar vortex in late September. The vortex split and the associated transport of high ozone from midlatitudes to the polar region reduced the ozone hole area from 18 × 106 km2 on 20 September to 3 × 106 km2 on 27 September 2002. A 23-yr time series of SBUV/2 daily zonal mean total ozone amounts between 70° and 80°S shows record high values [385 Dobson units (DU)] during the late-September 2002 warming event. The transport and descent of high ozone from low latitudes to high latitudes between 60 and 15 mb contributed to the unusual increase in total column ozone and a small ozone hole estimated using the standard criterion (area with total ozone < 220 DU). In contrast, TOVS observations show an ozone-depleted region between 0 and 24 km, indicating that ozone destruction was present in the elongated but unsplit vortex in the lower stratosphere. During the warming event, the low-ozone regions in the middle and upper stratosphere were not vertically aligned with the low-ozone regions in the upper troposphere and lower stratosphere. This offset in the vertical distribution of ozone resulted in higher total column ozone masking the ozone depletion in the lower stratosphere and resulting in a smaller ozone hole size estimate from satellite total ozone data.

2009 ◽  
Vol 9 (17) ◽  
pp. 6363-6376 ◽  
Author(s):  
H. Struthers ◽  
G. E. Bodeker ◽  
J. Austin ◽  
S. Bekki ◽  
I. Cionni ◽  
...  

Abstract. While chemistry-climate models are able to reproduce many characteristics of the global total column ozone field and its long-term evolution, they have fared less well in simulating the commonly used diagnostic of the area of the Antarctic ozone hole i.e. the area within the 220 Dobson Unit (DU) contour. Two possible reasons for this are: (1) the underlying Global Climate Model (GCM) does not correctly simulate the size of the polar vortex, and (2) the stratospheric chemistry scheme incorporated into the GCM, and/or the model dynamics, results in systematic biases in the total column ozone fields such that the 220 DU contour is no longer appropriate for delineating the edge of the ozone hole. Both causes are examined here with a view to developing ozone hole area diagnostics that better suit measurement-model inter-comparisons. The interplay between the shape of the meridional mixing barrier at the edge of the vortex and the meridional gradients in total column ozone across the vortex edge is investigated in measurements and in 5 chemistry-climate models (CCMs). Analysis of the simulation of the polar vortex in the CCMs shows that the first of the two possible causes does play a role in some models. This in turn affects the ability of the models to simulate the large observed meridional gradients in total column ozone. The second of the two causes also strongly affects the ability of the CCMs to track the observed size of the ozone hole. It is shown that by applying a common algorithm to the CCMs for selecting a delineating threshold unique to each model, a more appropriate diagnostic of ozone hole area can be generated that shows better agreement with that derived from observations.


2012 ◽  
Vol 12 (1) ◽  
pp. 425-436 ◽  
Author(s):  
K.-F. Li ◽  
B. Tian ◽  
D. E. Waliser ◽  
M. J. Schwartz ◽  
J. L. Neu ◽  
...  

Abstract. Tian et al. (2007) found that the MJO-related total column ozone (O3) anomalies of 10 DU (peak-to-trough) are mainly evident over the subtropics and dynamically driven by the vertical movement of the subtropical tropopause layer. It was then hypothesized that the subtropical total column O3 anomalies are primarily associated with the O3 variability in the stratosphere rather the troposphere. In this paper, we investigate the vertical structure of MJO-related subtropical O3 variations using the vertical O3 profiles from the Aura Microwave Limb Sounder (MLS) and Tropospheric Emission Spectrometer (TES), as well as in-situ measurements by the Southern Hemisphere Additional Ozonesondes (SHADOZ) project. Our analysis indicates that the subtropical O3 anomalies maximize approximately in the lower stratosphere (60–100 hPa). Furthermore, the spatial-temporal patterns of the subtropical O3 anomalies in the lower stratosphere are very similar to that of the total column. In particular, they are both dynamically driven by the vertical movement of subtropical tropopause. The subtropical partial O3 column anomalies between 30–200 hPa accounts for more than 50 % of the total O3 column anomalies. TES measurements show that at most 27 % of the total O3 column anomalies are contributed by the tropospheric components. This indicates that the subtropical total column O3 anomalies are mostly from the O3 anomalies in the lower stratosphere, which supports the hypothesis of Tian et al. (2007). The strong connection between the intraseasonal subtropical stratospheric O3 variations and the MJO implies that the stratospheric O3 variations may be predictable with similar lead times over the subtropics. Future work could involve a similar study or an O3 budget analysis using a sophisticated chemical transport model in the near-equatorial regions where the observed MJO signals of total column O3 are weak.


2011 ◽  
Vol 11 (8) ◽  
pp. 24503-24533 ◽  
Author(s):  
K.-F. Li ◽  
B. Tian ◽  
D. E. Waliser ◽  
M. J. Schwartz ◽  
J. L. Neu ◽  
...  

Abstract. Tian et al. (2007) found that the MJO-related total column ozone (O3) anomalies of 10 DU (peak-to-trough) are mainly evident over the subtropics and dynamically driven by the vertical movement of the subtropical tropopause layer. It was then hypothesized that the subtropical total column O3 anomalies are primarily associated with the O3 variability in the stratosphere rather the troposphere. In this paper, we investigate the vertical structure of MJO-related subtropical O3 variations using the vertical O3 profiles from the Aura Microwave Limb Sounder (MLS) and Tropospheric Emission Spectrometer (TES), as well as in situ measurements by the Southern Hemisphere Additional Ozonesondes (SHADOZ) project. Our analysis indicates that the subtropical O3 anomalies maximize approximately in the lower stratosphere (60–100 hPa). Furthermore, the spatial-temporal patterns of the subtropical O3 anomalies in the lower stratosphere are very similar to that of the total column. In particular, they are both dynamically driven by the vertical movement of subtropical tropopause. The subtropical partial O3 column anomalies between 30–200 hPa accounts for more than 50 % of the total O3 column anomalies. TES measurements show that at most 30 % of the total O3 column anomalies are contributed by the tropospheric components. This indicates that the subtropical total column O3 anomalies are mostly from the O3 anomalies in the lower stratosphere, which supports the hypothesis of Tian et al. (2007). The strong connection between the intraseasonal subtropical stratospheric O3 variations and the MJO implies that the stratospheric O3 variations may be predictable with similar lead times over the subtropics. Future work could involve a similar study or an O3 budget analysis using a sophisticated chemical transport model in the near-equatorial regions where the observed MJO signals of total column O3 are weak.


2013 ◽  
Vol 6 (6) ◽  
pp. 10081-10115 ◽  
Author(s):  
E. W. Chiou ◽  
P. K. Bhartia ◽  
R. D. McPeters ◽  
D. G. Loyola ◽  
M. Coldewey-Egbers ◽  
...  

Abstract. This paper describes the comparison of the variability of total column ozone inferred from the three independent multi-year data records, namely, (i) SBUV(v8.6) profile total ozone, (ii) GTO(GOME-Type total ozone), and (iii) Ground-based total ozone data records covering the 16-yr overlap period (March 1996 through June 2011). Analyses are conducted based on area weighted zonal means for (0–30° S), (0–30° N), (50–30° S), and (30–60° N). It has been found that on average, the differences in monthly zonal mean total ozone vary between −0.32 to 0.76 % and are well within 1%. For "GTO minus SBUV", the standard deviations and ranges (maximum minus minimum) of the differences regarding monthly zonal mean total ozone vary between 0.58 to 0.66% and 2.83 to 3.82% respectively, depending on the latitude band. The corresponding standard deviations and ranges regarding the differences in monthly zonal mean anomalies show values between 0.40 to 0.59% and 2.19 to 3.53%. The standard deviations and ranges of the differences "Ground-based minus SBUV" regarding both monthly zonal means and anomalies are larger by a factor of 1.4 to 2.9 in comparison to "GTO minus SBUV". The Ground-based zonal means, while show no systematic differences, demonstrate larger scattering of monthly data compared to satellite-based records. The differences in the scattering are significantly reduced if seasonal zonal averages are analyzed. The trends of the differences "GTO minus SBUV" and "Ground-based minus SBUV" are found to vary between −0.04 and 0.12% yr−1 (−0.11 and 0.31 DU yr−1). These negligibly small trends have provided strong evidence that there are no significant time dependent differences among these multi-year total ozone data records. Analyses of the deviations from pre-1980 level indicate that for the overlap period of 1996 to 2010, all three data records show gradual recovery at (30–60° N) from −5% in 1996 to −2% in 2010. The corresponding recovery at (50–30° S) is not as obvious until after 2006.


2018 ◽  
Vol 11 (6) ◽  
pp. 3595-3610 ◽  
Author(s):  
Anna Vaskuri ◽  
Petri Kärhä ◽  
Luca Egli ◽  
Julian Gröbner ◽  
Erkki Ikonen

Abstract. We demonstrate the use of a Monte Carlo model to estimate the uncertainties in total ozone column (TOC) derived from ground-based direct solar spectral irradiance measurements. The model estimates the effects of possible systematic spectral deviations in the solar irradiance spectra on the uncertainties in retrieved TOC. The model is tested with spectral data measured with three different spectroradiometers at an intercomparison campaign of the research project “Traceability for atmospheric total column ozone” at Izaña, Tenerife on 17 September 2016. The TOC values derived at local noon have expanded uncertainties of 1.3 % (3.6 DU) for a high-end scanning spectroradiometer, 1.5 % (4.4 DU) for a high-end array spectroradiometer, and 4.7 % (13.3 DU) for a roughly adopted instrument based on commercially available components and an array spectroradiometer when correlations are taken into account. When neglecting the effects of systematic spectral deviations, the uncertainties reduce by a factor of 3. The TOC results of all devices have good agreement with each other, within the uncertainties, and with the reference values of the order of 282 DU during the analysed day, measured with Brewer spectrophotometer #183.


2005 ◽  
Vol 5 (3) ◽  
pp. 3811-3845 ◽  
Author(s):  
G. E. Bodeker ◽  
H. Shiona ◽  
H. Eskes

Abstract. An assimilated data base of total column ozone measurements from satellites has been used to generate a set of indicators describing attributes of the Antarctic ozone hole for the period 1979 to 2003, including (i) daily measures of the area over Antarctica where ozone levels are below 150DU, below 220DU, more than 30% below 1979 to 1981 norms, and more than 50% below 1979 to 1981 norms, (ii) the date of disappearance of 150DU ozone values, 220DU ozone values, values 30% below 1979 to 1981 norms, and values 50% below 1979 to 1981 norms, for each year, (iii) daily minimum total column ozone values over Antarctica, and (iv) daily values of the ozone mass deficit based on a O3<220DU threshold. The assimilated data base combines satellite-based ozone measurements from 4 Total Ozone Mapping Spectrometer (TOMS) instruments, 3 different retrievals from the Global Ozone Monitoring Experiment (GOME), and data from 4 Solar Backscatter Ultra-Violet (SBUV) instruments. Comparisons with the global ground-based Dobson spectrophotometer network are used to remove offsets and drifts between the different data sets to produce a global homogeneous data set that combines the advantages of good spatial coverage of satellite data with good long-term stability of ground-based measurements. One potential use of the derived indices is detection of the expected recovery of the Antarctic ozone hole. The suitability of the derived indicators to this task is discussed in the context of their variability and their susceptibility to saturation effects which makes them less responsive to decreasing stratospheric halogen loading. It is also shown that if the corrections required to match recent Earth Probe TOMS measurements to Dobson measurements are not applied, some of the indictors are affected so as to obscure detection of the recovery of the Antarctic ozone hole.


2016 ◽  
Author(s):  
E. M. Bednarz ◽  
A. C. Maycock ◽  
N. L. Abraham ◽  
P. Braesicke ◽  
O. Dessens ◽  
...  

Abstract. Future trends in Arctic springtime total column ozone, and its chemical and dynamical drivers, are assessed using a 7 member ensemble from the Met Office Unified Model with United Kingdom Chemistry and Aerosols (UM-UKCA) simulating the period 1960-2100. The Arctic mean March total column ozone increases throughout the 21st century at a rate of ~11.5 DU decade-1, and is projected to return to the 1980 level in the late 2030s. However, the integrations show that even past 2060 springtime Arctic ozone can episodically drop by ~50-100 DU below the long-term mean to near present day values. Consistent with the global decline in inorganic chlorine (Cly) over the century, the estimated mean halogen induced chemical ozone loss in the Arctic lower atmosphere in spring decreases by around a factor of two between 1981-2000 and 2061-2080. However, in the presence of a cold and strong polar vortex elevated halogen losses well above the long-term mean continue to occur in the simulations into the second part of the century. The ensemble shows a radiatively-driven cooling trend modelled in the Arctic winter mid- and upper stratosphere, but there is less consistency across the seven ensemble members in the lower stratosphere (100-50 hPa). This is partly due to an increase in downwelling over the Arctic polar cap in winter, which increases transport of ozone into the polar region as well as drives adiabatic warming that partly offsets the radiatively-driven stratospheric cooling. However, individual years characterised by significantly suppressed downwelling, reduced transport and low temperatures continue into the future. We conclude that despite the future long-term recovery of Arctic ozone, the large interannual dynamical variability is expected to continue thereby facilitating episodic reductions in springtime ozone columns. Whilst our results suggest that the relative role of dynamical processes for determining Arctic springtime ozone will increase in the future, halogen chemistry will remain a smaller but non-negligible contributor for many decades.


2018 ◽  
Author(s):  
Anna Vaskuri ◽  
Petri Kärhä ◽  
Luca Egli ◽  
Julian Gröbner ◽  
Erkki Ikonen

Abstract. We demonstrate a Monte Carlo model to calculate the uncertainties of total ozone column, TOC, derived from ground-based directional solar spectral irradiance measurements. The model takes into account effects that correlations in the spectral irradiance data may have on the results. The model is tested with spectral data measured with three different spectroradiometers at an intercomparison campaign of the research project Traceability for atmospheric total column ozone at Izaña, Tenerife on 17 September 2016. The TOC values derived at noon have expanded uncertainties of 1.3 % for a high-end scanning spectroradiometer, 1.3 % for a high-end array spectroradiometer, and 3.3 % for a roughly adopted instrument based on commercially available components and an array spectroradiometer. The level of TOC measured with reference Brewer spectrophotometer #183 is of the order of 282 DU during the analysed day and in agreement with the results of the two former instruments.


2015 ◽  
Vol 8 (11) ◽  
pp. 4845-4850 ◽  
Author(s):  
R. D. McPeters ◽  
S. Frith ◽  
G. J. Labow

Abstract. The ozone data record from the Ozone Monitoring Instrument (OMI) onboard the NASA Earth Observing System (EOS) Aura satellite has proven to be very stable over the 10-plus years of operation. The OMI total column ozone processed through the Total Ozone Mapping Spectrometer (TOMS) ozone retrieval algorithm (version 8.5) has been compared with ground-based measurements and with ozone from a series of SBUV/2 (Solar Backscatter Ultraviolet) instruments. Comparison with an ensemble of Brewer–Dobson sites shows an absolute offset of about 1.5 % and almost no relative trend. Comparison with a merged ozone data set (MOD) created by combining data from a series of SBUV/2 instruments again shows an offset, of about 1 %, and a relative trend of less than 0.5 % over 10 years. The offset is mostly due to the use of the old Bass–Paur ozone cross sections in the OMI retrievals rather than the Brion–Daumont–Malicet cross sections that are now recommended. The bias in the Southern Hemisphere is smaller than that in the Northern Hemisphere, 0.9 % vs. 1.5 %, for reasons that are not completely understood. When OMI was compared with the European realization of a multi-instrument ozone time series, the GTO (GOME type Total Ozone) data set, there was a small trend of about −0.85 % decade−1. Since all the comparisons of OMI relative to other ozone measuring systems show relative trends that are less than 1 % decade−1, we conclude that the OMI total column ozone data are sufficiently stable that they can be used in studies of ozone trends.


Sign in / Sign up

Export Citation Format

Share Document