scholarly journals Atmospheric oxidation of 1,3-butadiene: characterization of gas and aerosol reaction products and implications for PM<sub>2.5</sub>

2014 ◽  
Vol 14 (24) ◽  
pp. 13681-13704 ◽  
Author(s):  
M. Jaoui ◽  
M. Lewandowski ◽  
K. Docherty ◽  
J. H. Offenberg ◽  
T. E. Kleindienst

Abstract. Secondary organic aerosol (SOA) was generated by irradiating 1,3-butadiene (13BD) in the presence of H2O2 or NOx. Experiments were conducted in a smog chamber operated in either flow or batch mode. A filter/denuder sampling system was used for simultaneously collecting gas- and particle-phase products. The chemical composition of the gas phase and SOA was analyzed using derivative-based methods (BSTFA, BSTFA + PFBHA, or DNPH) followed by gas chromatography–mass spectrometry (GC–MS) or high-performance liquid chromatography (HPLC) analysis of the derivative compounds. The analysis showed the occurrence of more than 60 oxygenated organic compounds in the gas and particle phases, of which 31 organic monomers were tentatively identified. The major identified products include glyceric acid, d-threitol, erythritol, d-threonic acid, meso-threonic acid, erythrose, malic acid, tartaric acid, and carbonyls including glycolaldehyde, glyoxal, acrolein, malonaldehyde, glyceraldehyde, and peroxyacryloyl nitrate (APAN). Some of these were detected in ambient PM2.5 samples, and could potentially serve as organic markers of 13BD. Furthermore, a series of oligoesters were detected and found to be produced through chemical reactions occurring in the aerosol phase between compounds bearing alcoholic groups and compounds bearing acidic groups. SOA was analyzed for organic mass to organic carbon (OM /OC) ratio, effective enthalpy of vaporization (Δ Hvapeff), and aerosol yield. The average OM /OC ratio and SOA density were 2.7 ± 0.09 and 1.2 ± 0.05, respectively. The average Δ Hvapeff was −26.08 ± 1.46 kJ mol−1, a value lower than that of isoprene SOA. The average laboratory SOA yield measured in this study at aerosol mass concentrations between 22.5 and 140.2 μg m−3 was 0.025 ± 0.011, a value consistent with the literature (0.021–0.178). While the focus of this study has been examination of the particle-phase measurements, the gas-phase photooxidation products have also been examined. The contribution of SOA products from 13BD oxidation to ambient PM2.5 was investigated by analyzing a series of ambient PM2.5 samples collected in several locations around the United States. In addition to the occurrence of several organic compounds in field and laboratory samples, glyceric acid, d-threitol, erythritol, erythrose, and threonic acid were found to originate only from the oxidation of 13BD based on our previous experiments involving chamber oxidation of a series of hydrocarbons. Initial attempts have been made to quantify the concentrations of these compounds. The average concentrations of these compounds in ambient PM2.5 samples from the California Research at the Nexus of Air Quality and Climate Change (CalNex) study ranged from 0 to approximately 14.1 ng m−3. The occurrence of several other compounds in both laboratory and field samples suggests that SOA originating from 13BD oxidation could contribute to the ambient aerosol mainly in areas with high 13BD emission rates.

2014 ◽  
Vol 14 (10) ◽  
pp. 14245-14290 ◽  
Author(s):  
M. Jaoui ◽  
M. Lewandowski ◽  
K. Docherty ◽  
J. H. Offenberg ◽  
T. E. Kleindienst

Abstract. Secondary organic aerosol (SOA) was generated by irradiating 1,3-butadiene (13BD) in the presence of H2O2 or NOx. Experiments were conducted in a smog chamber operated in either flow or batch mode. A filter/denuder sampling system was used for simultaneously collecting gas- and particle-phase products. The chemical composition of the gas phase and SOA was analyzed using derivative-based methods (BSTFA, BSTFA + PFBHA, or DNPH) followed by gas chromatography–mass spectrometry (GC-MS) or high-performance liquid chromatography (HPLC) analysis of the derivative compounds. The analysis showed the occurrence of more than 60 oxygenated organic compounds in the gas and particle phases, of which 31 organic monomers were tentatively identified. The major identified products include glyceric acid, d-threitol, erythritol, d-threonic acid, meso-threonic acid, erythrose, malic acid, tartaric acid, and carbonyls including glycolaldehyde, glyoxal, acrolein, malonaldehyde, glyceraldehyde, and peroxyacryloyl nitrate (APAN). Some of these were detected in ambient PM2.5 samples and could potentially serve as organic markers of 1,3-butadiene (13BD). Furthermore, a series of oligoesters were detected and found to be produced from esterification reactions among compounds bearing alcoholic groups and compounds bearing acidic groups. Time profiles are provided for selected compounds. SOA was analyzed for organic mass to organic carbon (OM / OC) ratio, effective enthalpy of vaporization (ΔHvapeff), and aerosol yield. The average OM / OC ratio and SOA density were 2.7 ± 0.09 and 1.2 ± 0.05, respectively. The average ΔHvapeff was 26.1 ± 1.5 kJ mol−1, a value lower than that of isoprene SOA. The average laboratory SOA yield measured in this study at aerosol mass concentrations between 22.5 and 140.2 μg m−3 was 0.025 ± 0.011, a value consistent with the literature (0.021–0.178). While the focus of this study has been examination of the particle-phase measurements, the gas-phase photooxidation products have also been examined. The contribution of SOA products from 13BD oxidation to ambient PM2.5 was investigated by analyzing a series of ambient PM2.5 samples collected in several locations around the United States. In addition to the occurrence of several organic compounds in field and laboratory samples, glyceric acid, d-threitol, erythritol, erythrose, and threonic acid were found to originate only from the oxidation of 13BD based on our previous experiments involving chamber oxidation of a series of hydrocarbons. Initial attempts have been made to quantify the concentrations of these compounds. The average concentrations of these compounds in ambient PM2.5 samples from the California Research at the Nexus of Air Quality and Climate Change (CalNex) study ranged from 0 to approximately 14.1 ng m−3. The occurrence of several other compounds in both laboratory and field samples suggests that SOA originating from 13BD oxidation could contribute to the ambient aerosol mainly in areas with high 13BD emission rates.


2011 ◽  
Vol 11 (8) ◽  
pp. 24043-24083 ◽  
Author(s):  
M. Jaoui ◽  
T. E. Kleindienst ◽  
J. H. Offenberg ◽  
M. Lewandowski ◽  
W. A. Lonneman

Abstract. The formation of secondary organic aerosol (SOA) generated by irradiating 2-methyl-3-buten-2-ol (MBO) in the presence and/or absence of NOx, H2O2, and/or SO2 was examined. Experiments were conducted in smog chambers operated either in dynamic or steady-state mode. A filter/denuder sampling system was used for simultaneously collecting gas and particle phase products. The structural characterization of gas and particulate products was investigated using BSTFA, BSTFA + PFBHA, and DNPH derivatization techniques followed by GC-MS and liquid chromatography analysis. This analysis showed the occurrence of more than 68 oxygenated organic compounds in the gas and particle phase, 28 of which were identified. The major components observed include 2,3-dihydroxyisopentanol (DHIP), 2-hydroxy-2-oxoisopentanol, 2,3-dihydroxy-3-methylbutanal, 2,3-dihydroxy-2-methylsuccinic acid, 2-hydroxy-2-methylpropanedioic acid, acetone, glyoxal, methylglyoxal, glycolaldehyde, and formaldehyde. Most of these oxygenated compounds were detected for the first time in this study. While measurements of the gas phase photooxidation products have been made, the focus of this work has been an examination of the particle phase. SOA from some experiments was analyzed for the organic mass to organic carbon ratio (OM/OC), the effective enthalpy of vaporization (ΔHvapeff), and the aerosol yield. Additionally, aerosol size, volume, and number concentrations were measured by a Scanning Mobility Particle Sizer coupled to a Condensation Particle Counter system. The OM/OC was found to be 2.1 in MBO/H2O2 system. The ΔHvapeff was 41 kJ mol−1, a value similar to that of isoprene SOA. The laboratory SOA yield measured in this study was found to be 0.7 % in MBO/H2O2 for an aerosol mass of 33 μg m−3. Time profiles and proposed reaction schemes are provided for selected compounds. The contribution of SOA products from MBO oxidation to ambient PM2.5 was investigated by analyzing a series of ambient PM2.5 samples collected in several places around the United States. In addition to the occurrence of several organic compounds in both field and laboratory samples, DHIP was found to originate only from the oxidation of MBO, and therefore this compound could serve as a tracer for MBO SOA. Initial attempts have been made to quantify the concentrations of DHIP and other compounds based on surrogate compound calibrations. The average concentrations of DHIP in ambient PM2.5 samples from Duke Forest, NC ranged from zero during cold seasons in areas with low MBO emission rates to approximately 1 ng m−3 during warm seasons in areas with high MBO emission rates. This appears to be the first time that DHIP has been detected in ambient PM2.5 samples. The occurrence of several other compounds in both laboratory and field samples suggests that SOA originating from MBO can contribute under selected ambient conditions to the ambient aerosol mainly in areas where MBO emissions are high.


2012 ◽  
Vol 12 (4) ◽  
pp. 2173-2188 ◽  
Author(s):  
M. Jaoui ◽  
T. E. Kleindienst ◽  
J. H. Offenberg ◽  
M. Lewandowski ◽  
W. A. Lonneman

Abstract. The formation of secondary organic aerosol (SOA) generated by irradiating 2-methyl-3-buten-2-ol (MBO) in the presence and/or absence of NOx, H2O2, and/or SO2 was examined. Experiments were conducted in smog chambers operated in either dynamic or static mode. A filter/denuder sampling system was used for simultaneously collecting gas- and particle-phase products. The structural characterization of gas and particulate products was investigated using BSTFA, BSTFA + PFBHA, and DNPH derivatization techniques followed by GC-MS and liquid chromatography analysis. This analysis showed the occurrence of more than 68 oxygenated organic compounds in the gas and particle phases, 28 of which were tentatively identified. The major components observed include 2,3-dihydroxyisopentanol (DHIP), 2-hydroxy-2-oxoisopentanol, 2,3-dihydroxy-3-methylbutanal, 2,3-dihydroxy-2-methylsuccinic acid, 2-hydroxy-2-methylpropanedioic acid, acetone, glyoxal, methylglyoxal, glycolaldehyde, and formaldehyde. Most of these oxygenated compounds were detected for the first time in this study. While measurements of the gas-phase photooxidation products have been made, the focus of this work has been an examination of the particle phase. SOA from some experiments was analyzed for the organic mass to organic carbon ratio (OM/OC), the effective enthalpy of vaporization (ΔHvapeff), and the aerosol yield. Additionally, aerosol size, volume, and number concentrations were measured by a Scanning Mobility Particle Sizer coupled to a Condensation Particle Counter system. The OM/OC ratio was 2.1 in the MBO/H2O2 system. The ΔHvapeff was 41 kJ mol−1, a value similar to that of isoprene SOA. The laboratory SOA yield measured in this study was 0.7% in MBO/H2O2 for an aerosol mass of 33 μg m−3. Secondary organic aerosol was found to be negligible under conditions with oxides of nitrogen (NOx) present. Time profiles and proposed reaction schemes are provided for selected compounds. The contribution of SOA products from MBO oxidation to ambient PM2.5 was investigated by analyzing a series of ambient PM2.5 samples collected in several places around the United States. In addition to the occurrence of several organic compounds in both field and laboratory samples, DHIP was found to originate only from the oxidation of MBO, and therefore this compound could potentially serve as a tracer for MBO SOA. Initial attempts have been made to quantify the concentrations of DHIP and other compounds based on surrogate compound calibrations. The average concentrations of DHIP in ambient PM2.5 samples from Duke Forest in North Carolina ranged from zero during cold seasons to approximately 1 ng m−3 during warm seasons. This appears to be the first time that DHIP has been detected in ambient PM2.5 samples. The occurrence of several other compounds in both laboratory and field samples suggests that SOA originating from MBO can contribute under selected ambient conditions to the ambient aerosol mainly in areas where MBO emissions are high.


2018 ◽  
Vol 18 (1) ◽  
pp. 357-370 ◽  
Author(s):  
Havala O. T. Pye ◽  
Andreas Zuend ◽  
Juliane L. Fry ◽  
Gabriel Isaacman-VanWertz ◽  
Shannon L. Capps ◽  
...  

Abstract. Several models were used to describe the partitioning of ammonia, water, and organic compounds between the gas and particle phases for conditions in the southeastern US during summer 2013. Existing equilibrium models and frameworks were found to be sufficient, although additional improvements in terms of estimating pure-species vapor pressures are needed. Thermodynamic model predictions were consistent, to first order, with a molar ratio of ammonium to sulfate of approximately 1.6 to 1.8 (ratio of ammonium to 2  ×  sulfate, RN∕2S  ≈  0.8 to 0.9) with approximately 70 % of total ammonia and ammonium (NHx) in the particle. Southeastern Aerosol Research and Characterization Network (SEARCH) gas and aerosol and Southern Oxidant and Aerosol Study (SOAS) Monitor for AeRosols and Gases in Ambient air (MARGA) aerosol measurements were consistent with these conditions. CMAQv5.2 regional chemical transport model predictions did not reflect these conditions due to a factor of 3 overestimate of the nonvolatile cations. In addition, gas-phase ammonia was overestimated in the CMAQ model leading to an even lower fraction of total ammonia in the particle. Chemical Speciation Network (CSN) and aerosol mass spectrometer (AMS) measurements indicated less ammonium per sulfate than SEARCH and MARGA measurements and were inconsistent with thermodynamic model predictions. Organic compounds were predicted to be present to some extent in the same phase as inorganic constituents, modifying their activity and resulting in a decrease in [H+]air (H+ in µg m−3 air), increase in ammonia partitioning to the gas phase, and increase in pH compared to complete organic vs. inorganic liquid–liquid phase separation. In addition, accounting for nonideal mixing modified the pH such that a fully interactive inorganic–organic system had a pH roughly 0.7 units higher than predicted using traditional methods (pH  =  1.5 vs. 0.7). Particle-phase interactions of organic and inorganic compounds were found to increase partitioning towards the particle phase (vs. gas phase) for highly oxygenated (O : C  ≥  0.6) compounds including several isoprene-derived tracers as well as levoglucosan but decrease particle-phase partitioning for low O : C, monoterpene-derived species.


2017 ◽  
Author(s):  
Havala O. T. Pye ◽  
Andreas Zuend ◽  
Juliane L. Fry ◽  
Gabriel Isaacman-VanWertz ◽  
Shannon L. Capps ◽  
...  

Abstract. Several models were used to describe the partitioning of ammonia, water, and organic compounds between the gas and particle phase for conditions in the southeastern United States during summer 2013. Existing equilibrium models and frameworks were found to be sufficient although additional improvements in terms of estimating pure-species vapor pressures are needed. Thermodynamic model predictions were consistent, to first order, with a molar ratio of ammonium to sulfate of approximately 1.6 to 1.8 (Ratio of ammonium to 2 × sulfate, RN/2S ≈ 0.8 to 0.9) with approximately 70 % of total ammonia and ammonium (NHx) in the particle. Southeastern Aerosol Research and Characterization (SEARCH) network gas and aerosol and Southern Oxidant and Aerosol Study (SOAS) Monitor for Aerosols and Gases in Air (MARGA) aerosol measurements were consistent with these conditions. CMAQv5.2 regional chemical transport model predictions did not reflect these conditions due to biases in the nonvolatile cations that resulted from either overestimated emissions and/or underestimated mixing. In addition, gas-phase ammonia was overestimated in the CMAQ model leading to an even lower fraction of total ammonia in the particle. Chemical Speciation Network (CSN) and Aerosol Mass Spectrometer (AMS) measurements indicated less ammonium per sulfate than SEARCH and MARGA measurements and were inconsistent with thermodynamic model predictions. Organic compounds were predicted to be present to some extent in the same phase as inorganic constituents, modifying their activity and resulting in a decrease in [H+]air (H+ in μg m−3 air), increase in ammonia partitioning to the gas phase, and increase in pH compared to complete organic vs. inorganic liquid-liquid phase separation. In addition, accounting for non-ideal mixing modified the pH such that a fully interactive inorganic-organic system had a pH roughly 0.7 units higher than predicted by traditional methods (pH = 1.5 vs. 0.7). Particle-phase interactions of organic and inorganic compounds were found to increase partitioning towards the particle phase (vs. gas phase) for highly oxygenated (O : C ≥ 0.6) compounds including several isoprene-derived tracers as well as levoglucosan, but decrease particle-phase partitioning for low O : C, monoterpene-derived species.


2013 ◽  
Vol 13 (3) ◽  
pp. 7175-7222 ◽  
Author(s):  
T. Yli-Juuti ◽  
K. Barsanti ◽  
L. Hildebrandt Ruiz ◽  
A.-J. Kieloaho ◽  
U. Makkonen ◽  
...  

Abstract. Climatic effects of newly-formed atmospheric secondary aerosol particles are to a large extent determined by their condensational growth rates. However, all the vapors condensing on atmospheric nanoparticles and growing them to climatically relevant sizes are not identified yet and the effects of particle phase processes on particle growth rates are poorly known. Besides sulfuric acid, organic compounds are known to contribute significantly to atmospheric nanoparticle growth. In this study a particle growth model MABNAG (Model for Acid-Base chemistry in NAnoparticle Growth) was developed to study the effect of salt formation on nanoparticle growth, which has been proposed as a potential mechanism lowering the equilibrium vapor pressures of organic compounds through dissociation in the particle phase and thus preventing their evaporation. MABNAG is a model for monodisperse aqueous particles and it couples dynamics of condensation to particle phase chemistry. Non-zero equilibrium vapor pressures, with both size and composition dependence, are considered for condensation. The model was applied for atmospherically relevant systems with sulfuric acid, one organic acid, ammonia, one amine and water in the gas phase allowed to condense on 3–20 nm particles. The effect of dissociation of the organic acid was found to be small under ambient conditions typical for a boreal forest site, but considerable for base-rich environments (gas phase concentrations of about 1010 cm−3 for the sum of the bases). The contribution of the bases to particle mass decreased as particle size increased, except at very high gas phase concentrations of the bases. The relative importance of amine versus ammonia did not change significantly as a function of particle size. While our results give a reasonable first estimate on the maximum contribution of salt formation to nanoparticle growth, further studies on, e.g. the thermodynamic properties of the atmospheric organics, concentrations of low-volatility organic acids and amines, along with studies investigating the applicability of thermodynamics for the smallest nanoparticles are needed to truly understand the acid-base chemistry of atmospheric nanoparticles.


2013 ◽  
Vol 13 (24) ◽  
pp. 12507-12524 ◽  
Author(s):  
T. Yli-Juuti ◽  
K. Barsanti ◽  
L. Hildebrandt Ruiz ◽  
A.-J. Kieloaho ◽  
U. Makkonen ◽  
...  

Abstract. Climatic effects of newly-formed atmospheric secondary aerosol particles are to a large extent determined by their condensational growth rates. However, all the vapours condensing on atmospheric nanoparticles and growing them to climatically relevant sizes are not identified yet and the effects of particle phase processes on particle growth rates are poorly known. Besides sulfuric acid, organic compounds are known to contribute significantly to atmospheric nanoparticle growth. In this study a particle growth model MABNAG (Model for Acid-Base chemistry in NAnoparticle Growth) was developed to study the effect of salt formation on nanoparticle growth, which has been proposed as a potential mechanism lowering the equilibrium vapour pressures of organic compounds through dissociation in the particle phase and thus preventing their evaporation. MABNAG is a model for monodisperse aqueous particles and it couples dynamics of condensation to particle phase chemistry. Non-zero equilibrium vapour pressures, with both size and composition dependence, are considered for condensation. The model was applied for atmospherically relevant systems with sulfuric acid, one organic acid, ammonia, one amine and water in the gas phase allowed to condense on 3–20 nm particles. The effect of dissociation of the organic acid was found to be small under ambient conditions typical for a boreal forest site, but considerable for base-rich environments (gas phase concentrations of about 1010 cm−3 for the sum of the bases). The contribution of the bases to particle mass decreased as particle size increased, except at very high gas phase concentrations of the bases. The relative importance of amine versus ammonia did not change significantly as a function of particle size. While our results give a reasonable first estimate on the maximum contribution of salt formation to nanoparticle growth, further studies on, e.g. the thermodynamic properties of the atmospheric organics, concentrations of low-volatility organics and amines, along with studies investigating the applicability of thermodynamics for the smallest nanoparticles are needed to truly understand the acid-base chemistry of atmospheric nanoparticles.


2021 ◽  
Vol 21 (4) ◽  
pp. 2407-2426 ◽  
Author(s):  
Gareth J. Stewart ◽  
Beth S. Nelson ◽  
W. Joe F. Acton ◽  
Adam R. Vaughan ◽  
Naomi J. Farren ◽  
...  

Abstract. Biomass burning emits significant quantities of intermediate-volatility and semi-volatile organic compounds (I/SVOCs) in a complex mixture, probably containing many thousands of chemical species. These components are significantly more toxic and have poorly understood chemistry compared to volatile organic compounds routinely quantified in ambient air; however, analysis of I/SVOCs presents a difficult analytical challenge. The gases and particles emitted during the test combustion of a range of domestic solid fuels collected from across Delhi were sampled and analysed. Organic aerosol was collected onto Teflon (PTFE) filters, and residual low-volatility gases were adsorbed to the surface of solid-phase extraction (SPE) discs. A new method relying on accelerated solvent extraction (ASE) coupled to comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC × GC–ToF-MS) was developed. This highly sensitive and powerful analytical technique enabled over 3000 peaks from I/SVOC species with unique mass spectra to be detected. A total of 15 %–100 % of gas-phase emissions and 7 %–100 % of particle-phase emissions were characterised. The method was analysed for suitability to make quantitative measurements of I/SVOCs using SPE discs. Analysis of SPE discs indicated phenolic and furanic compounds were important for gas-phase I/SVOC emissions and levoglucosan to the aerosol phase. Gas- and particle-phase emission factors for 21 polycyclic aromatic hydrocarbons (PAHs) were derived, including 16 compounds listed by the US EPA as priority pollutants. Gas-phase emissions were dominated by smaller PAHs. The new emission factors were measured (mg kg−1) for PAHs from combustion of cow dung cake (615), municipal solid waste (1022), crop residue (747), sawdust (1236), fuelwood (247), charcoal (151) and liquefied petroleum gas (56). The results of this study indicate that cow dung cake and municipal solid waste burning are likely to be significant PAH sources, and further study is required to quantify their impact alongside emissions from fuelwood burning.


2020 ◽  
Author(s):  
Gareth J. Stewart ◽  
Beth S. Nelson ◽  
W. Joe F. Acton ◽  
Adam R. Vaughan ◽  
Naomi J. Farren ◽  
...  

Abstract. Biomass burning emits significant quantities of intermediate-volatility and semi-volatile volatile organic compounds (I/SVOCs) in a complex mixture, probably containing many thousands of chemical species. These components are significantly more toxic and have poorly understood chemistry compared to volatile organic compounds routinely analysed in ambient air, however quantification of I/SVOCs presents a difficult analytical challenge. The gases and particles emitted during the test combustion of a range of domestic solid fuels collected from across New Delhi were sampled and analysed. Organic aerosol was collected onto Teflon (PTFE) filters and residual low-volatility gases were adsorbed to the surface of solid-phase extraction (SPE) disks. A new method relying on accelerated solvent extraction (ASE) coupled to comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-ToF-MS) was developed. This highly sensitive and powerful analytical technique enabled over 3000 peaks from I/SVOC species with unique mass spectra to be detected. 15–100 % of gas-phase emissions and 7–100 % of particle-phase emissions were characterised. The method was analysed for suitability to make quantitative measurements of I/SVOCs using SPE disks. Analysis of SPE disks indicated phenolic and furanic compounds were important to gas-phase I/SVOC emissions and levoglucosan to the aerosol phase. Gas- and particle-phase emission factors for 21 polycyclic aromatic hydrocarbons (PAHs) were derived, including 16 compounds listed by the US EPA as priority pollutants. Gas-phase emissions were dominated by smaller PAHs. New emission factors were measured (mg kg−1) for PAHs from combustion of cow dung cake (615), municipal solid waste (1022), crop residue (747), sawdust (1236), fuel wood (247), charcoal (151) and liquified petroleum gas (56). The results of this study indicate that cow dung cake and municipal solid waste burning are likely to be significant PAH sources and further study is required to quantify their impact, alongside emissions from fuel wood burning.


Sign in / Sign up

Export Citation Format

Share Document