scholarly journals Formation of gas-phase carbonyls from heterogeneous oxidation of polyunsaturated fatty acids at the air–water interface and of the sea surface microlayer

2014 ◽  
Vol 14 (3) ◽  
pp. 1371-1384 ◽  
Author(s):  
S. Zhou ◽  
L. Gonzalez ◽  
A. Leithead ◽  
Z. Finewax ◽  
R. Thalman ◽  
...  

Abstract. Motivated by the potential for reactive heterogeneous chemistry occurring at the ocean surface, gas-phase products were observed when a reactive sea surface microlayer (SML) component, i.e. the polyunsaturated fatty acids (PUFA) linoleic acid (LA), was exposed to gas-phase ozone at the air–seawater interface. Similar oxidation experiments were conducted with SML samples collected from two different oceanic locations, in the eastern equatorial Pacific Ocean and from the west coast of Canada. Online proton-transfer-reaction mass spectrometry (PTR-MS) University of Colorado light-emitting diode cavity-enhanced differential optical absorption spectroscopy (LED-CE-DOAS) were used to detect oxygenated gas-phase products from the ozonolysis reactions. The LA studies indicate that oxidation of a PUFA monolayer on seawater gives rise to prompt and efficient formation of gas-phase aldehydes. The products are formed via the decomposition of primary ozonides which form upon the initial reaction of ozone with the carbon–carbon double bonds in the PUFA molecules. In addition, two highly reactive dicarbonyls, malondialdehyde (MDA) and glyoxal, were also generated, likely as secondary products. Specific yields relative to reactant loss were 78%, 29%, 4% and < 1% for n-hexanal, 3-nonenal, MDA and glyoxal, respectively, where the yields for MDA and glyoxal are likely lower limits. Heterogeneous oxidation of SML samples confirm for the first time that similar carbonyl products are formed via ozonolysis of environmental samples.

2013 ◽  
Vol 13 (7) ◽  
pp. 17545-17583
Author(s):  
S. Zhou ◽  
L. Gonzalez ◽  
A. Leithead ◽  
Z. Finewax ◽  
R. Thalman ◽  
...  

Abstract. Motivated by the potential for reactive heterogeneous chemistry occurring at the ocean surface, gas-phase products were observed when a reactive sea surface microlayer (SML) component, i.e. the polyunsaturated fatty acid (PUFA) linoleic acid (LA), was exposed to gas-phase ozone at the air–seawater interface. Similar oxidation experiments were conducted with SML samples collected from two different oceanic locations, in the eastern equatorial Pacific Ocean and from the west coast of Canada. Online proton-transfer-reaction mass spectrometry (PTR-MS) and light-emitting diode cavity enhanced differential optical absorption spectroscopy (LED-CE-DOAS) were used to detect oxygenated gas-phase products from the ozonolysis reactions. The LA studies indicate that oxidation of a PUFA monolayer on seawater gives rise to prompt and efficient formation of gas phase aldehydes. The products are formed via the decomposition of primary ozonides which form upon the initial reaction of ozone with the carbon-carbon double bonds in the PUFA molecules. In addition, two highly reactive di-carbonyls, malondialdehyde (MDA) and glyoxal, were also generated, likely as secondary products. Specific yields relative to reactant loss were 78%, 29%, 4% and <1% for n-hexanal, 3-nonenal, MDA and glyoxal, respectively, where the yields for MDA and glyoxal are likely lower limits. Heterogeneous oxidation of SML samples confirm for the first time that similar carbonyl products are formed via ozonolysis of environmental samples. The potential impact of such chemistry on the atmosphere of the marine boundary layer is discussed.


Science ◽  
1995 ◽  
Vol 270 (5238) ◽  
pp. 897-898
Author(s):  
Mark M. Littler ◽  
Diane S. Littler

Science ◽  
1995 ◽  
Vol 270 (5238) ◽  
pp. 897-897
Author(s):  
M. S. Hale ◽  
J. G. Mitchell

2018 ◽  
Author(s):  
Jonathan P. D. Abbatt ◽  
W. Richard Leaitch ◽  
Amir A. Aliabadi ◽  
Alan K. Bertram ◽  
Jean-Pierre Blanchet ◽  
...  

Abstract. Motivated by the need to predict how the Arctic atmosphere will change in a warming world, this article summarizes recent advances made by the research consortium NETCARE (Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments) that contribute to our fundamental understanding of Arctic aerosol particles as they relate to climate forcing. The overall goal of NETCARE research has been to use an interdisciplinary approach encompassing extensive field observations and a range of chemical transport, earth system, and biogeochemical models. Several major findings and advances have emerged from NETCARE since its formation in 2013 . (1) Unexpectedly high summertime dimethyl sulfide (DMS) levels were identified in ocean water and the overlying atmosphere in the Canadian Arctic Archipelago (CAA). Furthermore, melt ponds, which are widely prevalent, were identified as an important DMS source. (2) Evidence was found of widespread particle nucleation and growth in the marine boundary layer in the CAA in the summertime. DMS-oxidation-driven nucleation is facilitated by the presence of atmospheric ammonia arising from sea bird colony emissions, and potentially also from coastal regions, tundra, and biomass burning. Via accumulation of secondary organic material (SOA), a significant fraction of the new particles grow to sizes that are active in cloud droplet formation. Although the gaseous precursors to Arctic marine SOA remain poorly defined, the measured levels of common continental SOA precursors (isoprene and monoterpenes) were low, whereas elevated mixing ratios of oxygenated volatile organic compounds were inferred to arise via processes involving the sea surface microlayer. (3) The variability in the vertical distribution of black carbon (BC) under both springtime Arctic haze and more pristine summertime aerosol conditions was observed. Measured particle size distributions and mixing states were used to constrain, for the first time, calculations of aerosol–climate interactions under Arctic conditions. Aircraft- and ground-based measurements were used to better establish the BC source regions that supply the Arctic via long-range transport mechanisms. (4) Measurements of ice nucleating particles (INPs) in the Arctic indicate that a major source of these particles is mineral dust, likely derived from local sources in the summer and long-range transport in the spring. In addition, INPs are abundant in the sea surface microlayer in the Arctic, and possibly play a role in ice nucleation in the atmosphere when mineral dust concentrations are low. (5) Amongst multiple aerosol components, BC was observed to have the smallest effective deposition velocities to high Arctic snow.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Nur Ili Hamizah Mustaffa ◽  
Thomas H. Badewien ◽  
Mariana Ribas-Ribas ◽  
Oliver Wurl

2010 ◽  
Vol 7 (4) ◽  
pp. 5719-5755 ◽  
Author(s):  
O. Wurl ◽  
E. Wurl ◽  
L. Miller ◽  
K. Johnson ◽  
S. Vagle

Abstract. Results from a study of surfactants in the sea-surface microlayer (SML) in different regions of the ocean (subtropical, temperate, polar) suggest that this interfacial layer between the ocean and atmosphere covers the ocean's surface to a significant extent. Threshold values at which primary production acts as a significant source of natural surfactants have been derived from the enrichment of surfactants in the SML relative to underlying water and local primary production. Similarly, we have also derived a wind speed threshold at which the SML is disrupted. The results suggest that surfactant enrichment in the SML is typically greater in oligotrophic regions of the ocean than in more productive waters. Furthermore, the enrichment of surfactants persisted at wind speeds of up to 10 m s−1 without any observed depletion above 5 m s−1. This suggests that the SML is stable enough to exist even at the global average wind speed of 6.6 m s−1. Global maps of primary production and wind speed are used to estimate the ocean's SML coverage. The maps indicate that wide regions of the Pacific and Atlantic Oceans between 30° N and 30° S are more significantly affected by the SML than northern of 30° N and southern of 30° S due to higher productivity (spring/summer blooms) and wind speeds exceeding 12 m s−1 respectively.


2017 ◽  
Author(s):  
Victoria E. Irish ◽  
Pablo Elizondo ◽  
Jessie Chen ◽  
Cédric Chou ◽  
Joannie Charette ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document