scholarly journals Two years of near real-time chemical composition of submicron aerosols in the region of Paris using an Aerosol Chemical Speciation Monitor (ACSM) and a multi-wavelength Aethalometer

2015 ◽  
Vol 15 (6) ◽  
pp. 2985-3005 ◽  
Author(s):  
J.-E. Petit ◽  
O. Favez ◽  
J. Sciare ◽  
V. Crenn ◽  
R. Sarda-Estève ◽  
...  

Abstract. Aerosol mass spectrometer (AMS) measurements have been successfully used towards a better understanding of non-refractory submicron (PM1) aerosol chemical properties based on short-term campaigns. The recently developed Aerosol Chemical Speciation Monitor (ACSM) has been designed to deliver quite similar artifact-free chemical information but for low cost, and to perform robust monitoring over long-term periods. When deployed in parallel with real-time black carbon (BC) measurements, the combined data set allows for a quasi-comprehensive description of the whole PM1 fraction in near real time. Here we present 2-year long ACSM and BC data sets, between mid-2011 and mid-2013, obtained at the French atmospheric SIRTA supersite that is representative of background PM levels of the region of Paris. This large data set shows intense and time-limited (a few hours) pollution events observed during wintertime in the region of Paris, pointing to local carbonaceous emissions (mainly combustion sources). A non-parametric wind regression analysis was performed on this 2-year data set for the major PM1 constituents (organic matter, nitrate, sulfate and source apportioned BC) and ammonia in order to better refine their geographical origins and assess local/regional/advected contributions whose information is mandatory for efficient mitigation strategies. While ammonium sulfate typically shows a clear advected pattern, ammonium nitrate partially displays a similar feature, but, less expectedly, it also exhibits a significant contribution of regional and local emissions. The contribution of regional background organic aerosols (OA) is significant in spring and summer, while a more pronounced local origin is evidenced during wintertime, whose pattern is also observed for BC originating from domestic wood burning. Using time-resolved ACSM and BC information, seasonally differentiated weekly diurnal profiles of these constituents were investigated and helped to identify the main parameters controlling their temporal variations (sources, meteorological parameters). Finally, a careful investigation of all the major pollution episodes observed over the region of Paris between 2011 and 2013 was performed and classified in terms of chemical composition and the BC-to-sulfate ratio used here as a proxy of the local/regional/advected contribution of PM. In conclusion, these first 2-year quality-controlled measurements of ACSM clearly demonstrate their great potential to monitor on a long-term basis aerosol sources and their geographical origin and provide strategic information in near real time during pollution episodes. They also support the capacity of the ACSM to be proposed as a robust and credible alternative to filter-based sampling techniques for long-term monitoring strategies.

2014 ◽  
Vol 14 (17) ◽  
pp. 24221-24271 ◽  
Author(s):  
J.-E. Petit ◽  
O. Favez ◽  
J. Sciare ◽  
V. Crenn ◽  
R. Sarda-Estève ◽  
...  

Abstract. Aerosol Mass Spectrometer (AMS) measurements have been successfully used towards a better understanding of non-refractory submicron (PM1) aerosol chemical properties based on short-term campaign. The recently developed Aerosol Chemical Speciation Monitor (ACSM) has been designed to deliver quite similar artefact-free chemical information but for low-cost, and to perform robust monitoring over long-term period. When deployed in parallel with real-time Black Carbon (BC) measurements, the combined dataset allows for a quasi-comprehensive description of the whole PM1 fraction in near real-time. Here we present a 2 year long ACSM and BC datasets, between mid-2011 and mid-2013, obtained at the French atmospheric SIRTA supersite being representative of background PM levels of the region of Paris. This large dataset shows intense and time limited (few hours) pollution events observed during wintertime in the region of Paris pointing to local carbonaceous emissions (mainly combustion sources). A non-parametric wind regression analysis was performed on this 2 year dataset for the major PM1 constituents (organic matter, nitrate, sulphate and source apportioned BC) and ammonia in order to better refine their geographical origins and assess local/regional/advected contributions which information are mandatory for efficient mitigation strategies. While ammonium sulphate typically shows a clear advected pattern, ammonium nitrate partially displays a similar feature, but less expected, it also exhibits a significant contribution of regional and local emissions. Contribution of regional background OA is significant in spring and summer while a more pronounced local origin is evidenced during wintertime which pattern is also observed for BC originating from domestic wood burning. Using time-resolved ACSM and BC information, seasonally differentiated weekly diurnal profiles of these constituents were investigated and helped to identify the main parameters controlling their temporal variations (sources, meteorological parameters). Finally, a careful investigation of all the major pollution episodes observed over the region of Paris between 2011 and 2013 was performed and classified in terms of chemical composition and BC-to-sulphate ratio used here as a proxy of the local/regional vs. advected contribution of PM. In conclusion, these first 2 year quality-controlled measurements of ACSM clearly demonstrate their great potential to monitor on a long term basis aerosol sources and their geographical origin and provide strategic information in near real-time during pollution episodes. They also support the capacity of the ACSM to be proposed as a robust and credible alternative to filter-based sampling techniques for long term monitoring strategies.


2020 ◽  
Author(s):  
Arnaud Mahieux ◽  
Ann Carine Vandaele ◽  
Sarah Chamberlain ◽  
Valérie Wilquet ◽  
Séverine Robert ◽  
...  

<p>The Solar Occultation in the InfraRed (SOIR) instrument onboard Venus Express sounded the Venus mesosphere and lower thermosphere at the terminator using solar occultation technique between April 2006 and December 2014.</p><p>We report on the water vapor vertical distribution above the clouds and geo-temporal variations, observed during the full Venus Express mission. Water vapor profiles are sampled between 80 and 120 km, and calculations of the water vapor volume mixing ratio agrees with those from previous studies. Short term variations over several Earth days dominate the data set, with densities varying by up to a factor 19 over a 24 hr period. Similarly to what was found for other trace gases detected with the SOIR instrument, such as HCl, HF and SO<sub>2</sub>, no significant spatial or long term trends are observed.</p><p>287 water vapor vertical profiles obtained at the Venus terminator between 80 km and 120 km from August 2006 and September 2014 were analyzed for temporal and spatial abundance variations. Standard deviations are significantly smaller than the full range of volume mixing ratio values at all altitudes indicating that the variations are real.</p><p>The decrease in volume mixing ratio abundance below 100 km appears to be a common feature of most water vapor volume mixing ratio profiles and agrees with the decrease in water vapor reported in previous studies. Based on a very limited number of spectra, the variability of the water vapor VMR was found to be higher in the lower than in the upper mesosphere of Venus; this is in agreement with our observations as the standard deviation of the SOIR mean profile is the smallest at 100 km and increases with decreasing altitude.</p><p>No significant spatial variations or long term temporal variations are observed in the present data set in which short term variability masks all other possible trends. Our observations agree that short term (between 1 and 10 Earth days) variability is dominant.</p><p>We also report on simultaneous observations of the water first isotopologue HDO made by SOIR, which occurred 194 times during the whole VEx mission. Similarly to water vapor, we observe a large variation of HDO with time and space, without any clear time of spatial dependency.</p><p>We report on the ratio of the simultaneously measured HDO and H<sub>2</sub>O profiles, that show a constant ratio of 0.1 ± 0.1 below 100 km, and increase exponentially at higher altitude to reach a value of 1 ± 0.4 at 120 km of altitude. The results are in agreement with previous works below 100 km.</p>


2014 ◽  
Vol 14 (2) ◽  
pp. 737-749 ◽  
Author(s):  
K. A. Kamilli ◽  
L. Poulain ◽  
A. Held ◽  
A. Nowak ◽  
W. Birmili ◽  
...  

Abstract. Aerosol hygroscopic growth factors and chemical properties were measured as part of the MEGAPOLI "Megacities Plume Case Study" at the urban site Laboratoire d'Hygiène de la Ville de Paris (LHVP) in the city center of Paris from June to August 2009, and from January to February 2010. Descriptive hygroscopic growth factors (DGF) were derived in the diameter range from 25 to 350 nm at relative humidities of 30, 55, 75, and 90% by applying the summation method on humidified and dry aerosol size distributions measured simultaneously with a humidified differential mobility particle sizer (HDMPS) and a twin differential mobility particle sizer (TDMPS). For 90% relative humidity, the DGF varied from 1.06 to 1.46 in summer, and from 1.06 to 1.66 in winter. Temporal variations in the observed mean DGF could be well explained with a simple growth model based on the aerosol chemical composition measured by aerosol mass spectrometry (AMS) and black carbon photometry (MAAP). In particular, good agreement was observed when sulfate was the predominant inorganic factor. A clear overestimation of the predicted growth factor was found when the nitrate mass concentration exceeded values of 10 μg m−3, e.g., during winter.


2009 ◽  
Vol 60 (11) ◽  
pp. 2949-2961 ◽  
Author(s):  
F. Baggiani ◽  
S. Marsili-Libelli

Automatic fault detection is becoming increasingly important in wastewater treatment plant operation, given the stringent treatment standards and the need to protect the investment costs from the potential damage of an unchecked fault propagating through the plant. This paper describes the development of a real-time Fault Detection and Isolation (FDI) system based on an adaptive Principal Component Analysis (PCA) algorithm, used to compare the current plant operation with a correct performance model based on a reference data set and the output of three ion-specific sensors (Hach-Lange gmbh, Düsseldorf, Germany): two Nitratax® NOx UV sensors, in the denitrification tank and downstream of the oxidation tanks, where an Amtax® ammonium-N sensor was also installed. The algorithm was initially developed in the Matlab environment and then ported into the LabView 8.20 (National Instruments, Austin, TX, USA) platform for real-time operation using a compact Field Point®, a Programmable Automation Controller by National Instruments. The FDI was tested with a large set of operational data with 1 min sampling time from August 2007 through May 2008 from a full-scale plant. After describing the real-time version of the PCA algorithm, this was tested with nine months of operational data which were sequentially processes by the algorithm in order to simulate an on-line operation. The FDI performance was assessed by organizing the sequential data in two differing moving windows: a short-horizon window to test the response to single malfunctions and a longer time-horizon to simulate multiple unrepaired failures. In both cases the algorithm performance was very satisfactory, with a 100% failure detection in the short window case, which decreased to 84% in the long window setting. The short-window performance was very effective in isolating sensor failures and short duration disturbances such as spikes, whereas the long term horizon provided accurate detection of long-term drifts and proved robust enough to allow for some delay in failure recovery. The system robustness is based on the use of multiple statistics which proved instrumental in discriminating among the various causes of malfunctioning.


2015 ◽  
Vol 15 (12) ◽  
pp. 17397-17448 ◽  
Author(s):  
U. Karstens ◽  
C. Schwingshackl ◽  
D. Schmithüsen ◽  
I. Levin

Abstract. Detailed 222Rn flux maps are an essential prerequisite for the use of radon in atmospheric transport studies. Here we present a high-resolution222Rn flux map for Europe, based on a parameterization of 222Rn production and transport in the soil. The 222Rn exhalation rate was parameterized based on soil properties, uranium content, and modelled soil moisture from two different land-surface reanalysis data sets. Spatial variations in exhalation rates are primarily determined by the uranium content of the soil, but also influenced by local water table depth and soil texture. Temporal variations are related to soil moisture variations as the molecular diffusion in the unsaturated soil zone depends on available air-filled pore space. The implemented diffusion parameterization was tested against campaign-based 222Rn profile measurements. Monthly 222Rn exhalation rates from European soils were calculated with a nominal spatial resolution of 0.083° × 0.083° and compared to long-term direct measurements of 222Rn exhalation rates in different areas of Europe. The two realizations of the 222Rn flux map, based on the different soil moisture data sets, both realistically reproduce the observed seasonality in the fluxes but yield considerable differences for absolute flux values. The average 222Rn flux from soils in Europe is estimated to be 10 or 15 mBq m-2 s-1, depending on the soil moisture data set, and the seasonal variations in the two realisations range from 7.1 mBq m-2 s-1 in February to 13.9 mBq m-2 s-1 in August and from 10.8 mBq m-2 s-1 in March to 19.7 mBq m-2 s-1 in July, respectively. This systematic difference highlights the importance of realistic soil moisture data for a reliable estimation of 222Rn exhalation rates.


2013 ◽  
Vol 13 (5) ◽  
pp. 14297-14330
Author(s):  
K. A. Kamilli ◽  
L. Poulain ◽  
A. Held ◽  
A. Nowak ◽  
W. Birmili ◽  
...  

Abstract. Aerosol hygroscopic growth factors and chemical properties were measured as part of the MEGAPOLI "Megacities Plume Case Study" at the urban site LHVP in the city center of Paris from June to August 2009, and from January to February 2010. Descriptive hygroscopic growth factors (DGF) were derived in the diameter range from 25 to 350 nm at relative humidities of 30, 55, 75, and 90% by applying the summation method on humidified and dry aerosol size distributions measured simultaneously with a humidified differential mobility particle sizer (HDMPS) and a twin differential mobility particle sizer (TDMPS). For 90% relative humidity, the DGF varied from 1.06 to 1.46 in summer, and from 1.06 to 1.66 in winter. Temporal variations in the observed mean DGF could be well explained with a simple growth model based on the aerosol chemical composition measured by aerosol mass spectrometry (AMS) and black carbon photometry (MAAP). In particular, good agreement was observed when sulfate was the predominant inorganic factor. A clear overestimation of the predicted growth factor was found when the nitrate mass concentration exceeded values of 10 μg m3, e.g. during winter.


1975 ◽  
Vol 10 (1) ◽  
pp. 33-41 ◽  
Author(s):  
J. Butcher ◽  
M. Boyer ◽  
CD. Fowle

Abstract Eleven small ponds, lined with polyethylene, were used to assess the consequences of applications of *DursbanR at 0.004, 0.030, 0.100 and 1.000 ppm and AbateR at 0.025 and 0.100 ppm active ingredient. The treated ponds showed a more pronounced long-term increase in pH and dissolved oxygen and decreasing total and dissolved carbon dioxide in comparison with untreated ponds. Algal blooms were of longer duration in treated ponds than in controls. Total photosynthetic productivity was higher in treated ponds but bacterial numbers did not change significantly. Photosynthetic productivity was estimated by following the changes in total carbon dioxide.


Sign in / Sign up

Export Citation Format

Share Document