scholarly journals Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

2015 ◽  
Vol 15 (8) ◽  
pp. 4045-4061 ◽  
Author(s):  
D. B. Atkinson ◽  
J. G. Radney ◽  
J. Lum ◽  
K. R. Kolesar ◽  
D. J. Cziczo ◽  
...  

Abstract. Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined here as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1–0.15 and 0.9–1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.

2014 ◽  
Vol 14 (22) ◽  
pp. 31203-31247 ◽  
Author(s):  
D. B. Atkinson ◽  
J. G. Radney ◽  
J. Lum ◽  
K. R. Kolesar ◽  
D. J. Cziczo ◽  
...  

Abstract. Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 CARES study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GF) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles, yielding κ = 0.1–0.15 and 0.9–1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.


2009 ◽  
Vol 9 (14) ◽  
pp. 4841-4854 ◽  
Author(s):  
T. Anttila ◽  
P. Vaattovaara ◽  
M. Komppula ◽  
A.-P. Hyvärinen ◽  
H. Lihavainen ◽  
...  

Abstract. In situ measurements of aerosol water uptake and activation of aerosols into cloud droplets provide information on how aerosols influence the microphysical properties of clouds. Here we present a computational scheme that can be used in connection with such measurements to assess the influence of the particle hygroscopicity and mixing state (in terms of the water uptake) on the cloud nucleating ability of particles. Additionally, it provides an estimate for the peak supersaturation of water vapour reached during the formation of the observed cloud(s). The method was applied in interpreting results of a measurement campaign that focused on aerosol-cloud interactions taking place at a subarctic background site located in Northern Finland (second Pallas Cloud Experiment, 2nd PaCE). A set of case studies was conducted, and the observed activation behavior could be successfully explained by a maximum supersaturation that varied between 0.18 and 0.26% depending on the case. In these cases, the diameter corresponding to the activated fraction of 50% was in the range of 110–140 nm, and the particles were only moderately water soluble with hygroscopic growth factors varying between 1.1 and 1.4. The conducted analysis showed that the activated fractions and the total number of particles acting as CCN are expected to be highly sensitive to the particle hygroscopic growth properties. For example, the latter quantity varied over a factor between 1.8 and 3.1, depending on the case, when the mean hygroscopic growth factors were varied by 10%. Another important conclusion is that size-dependent activation profiles carries information on the mixing state of particles.


2008 ◽  
Vol 8 (4) ◽  
pp. 14519-14556
Author(s):  
T. Anttila ◽  
P. Vaattovaara ◽  
M. Komppula ◽  
A.-P. Hyvärinen ◽  
H. Lihavainen ◽  
...  

Abstract. In situ measurements of aerosol water uptake and activation of aerosols into cloud droplets provide information on how aerosols influence the microphysical properties of clouds. Here we present a computational scheme that can be used in connection with such measurements to assess the influence of the particle chemical composition and mixing state (in terms of the water uptake) on the cloud nucleating ability of particles. Additionally, it provides an estimate for the peak supersaturation of water vapour reached during the formation of the observed cloud(s). The method was applied in interpreting results of a measurement campaign that focused on aerosol-cloud interactions taking place at a subarctic background site located in northern Finland (second Pallas Cloud Experiment, 2nd PaCE). A set of case studies was conducted, and the observed activation behavior could be successfully explained by a maximum supersaturation that varied between 0.18 and 0.26% depending on the case. In these cases, the diameter corresponding to the activated fraction of 50% was in the range of 110–140 nm, and the particles were only moderately water soluble with hygroscopic growth factors varying between 1.1 and 1.4. The conducted analysis showed that the activated fractions and the total number of particles acting as CCN are expected to be highly sensitive to the particle hygroscopicity. For example, the latter quantity varied over a factor between 1.8 and 3.1, depending on the case, when the mean hygroscopic growth factors were varied by 10%. Another important conclusion is that size-dependent activation profiles carries information on the mixing state of particles.


2017 ◽  
Author(s):  
Jing Chen ◽  
Sri Hapsari Budisulistiorini ◽  
Takuma Miyakawa ◽  
Yuichi Komazaki ◽  
Mikinori Kuwata

Abstract. Diameter growth factors (GF) of 100 nm haze particles at 85 % relative humidity and chemical characteristics were simultaneously monitored at Singapore in October 2015 during a pervasive wildfire haze episode, which was caused by peatland burning in Indonesia. Non-refractory submicron particles (NR-PM1) were dominated by organics (approximating 77.1 % in total mass), whereas sulfate was the most abundant inorganic constituent (11.7 % on average). A statistical analysis of the organic mass spectra showed that most of organics (36.0 % of NR-PM1 mass) were highly oxygenated. Diurnal variations of GF, number fraction of highly hygroscopic mode particles, mass fraction of sulfate, and mass fraction of oxygenated organics (OOA) synchronized well, peaking during daytime. The mean hygroscopicity parameter (κ) of haze particles was 0.189 ± 0.087, and mean κ values of organics were 0.157 ± 0.108 (κorg, bulk organics) and 0.287 ± 0.193 (κOOA, OOA), demonstrating the important roles of both sulfate and highly oxygenated organics in hygroscopic growth of wildfire haze particles. κorg was also affected by the water-soluble organic fraction to some extent. These results show the importance of secondary formation processes in promoting water uptake properties of wildfire haze particles, including both inorganic and organic species. Further detailed size-resolved as well as molecular level chemical information of organics will be necessary for more profound exploration of water uptake by wildfire haze particles in Equatorial Asia.


2007 ◽  
Vol 583 (1) ◽  
pp. 202-209 ◽  
Author(s):  
Anna Gómez-Gutiérrez ◽  
Eric Jover ◽  
Josep M. Bayona ◽  
Joan Albaigés

Sign in / Sign up

Export Citation Format

Share Document