scholarly journals Size-dependent activation of aerosols into cloud droplets at a subarctic background site during the second Pallas Cloud Experiment (2nd PaCE): method development and data evaluation

2008 ◽  
Vol 8 (4) ◽  
pp. 14519-14556
Author(s):  
T. Anttila ◽  
P. Vaattovaara ◽  
M. Komppula ◽  
A.-P. Hyvärinen ◽  
H. Lihavainen ◽  
...  

Abstract. In situ measurements of aerosol water uptake and activation of aerosols into cloud droplets provide information on how aerosols influence the microphysical properties of clouds. Here we present a computational scheme that can be used in connection with such measurements to assess the influence of the particle chemical composition and mixing state (in terms of the water uptake) on the cloud nucleating ability of particles. Additionally, it provides an estimate for the peak supersaturation of water vapour reached during the formation of the observed cloud(s). The method was applied in interpreting results of a measurement campaign that focused on aerosol-cloud interactions taking place at a subarctic background site located in northern Finland (second Pallas Cloud Experiment, 2nd PaCE). A set of case studies was conducted, and the observed activation behavior could be successfully explained by a maximum supersaturation that varied between 0.18 and 0.26% depending on the case. In these cases, the diameter corresponding to the activated fraction of 50% was in the range of 110–140 nm, and the particles were only moderately water soluble with hygroscopic growth factors varying between 1.1 and 1.4. The conducted analysis showed that the activated fractions and the total number of particles acting as CCN are expected to be highly sensitive to the particle hygroscopicity. For example, the latter quantity varied over a factor between 1.8 and 3.1, depending on the case, when the mean hygroscopic growth factors were varied by 10%. Another important conclusion is that size-dependent activation profiles carries information on the mixing state of particles.

2009 ◽  
Vol 9 (14) ◽  
pp. 4841-4854 ◽  
Author(s):  
T. Anttila ◽  
P. Vaattovaara ◽  
M. Komppula ◽  
A.-P. Hyvärinen ◽  
H. Lihavainen ◽  
...  

Abstract. In situ measurements of aerosol water uptake and activation of aerosols into cloud droplets provide information on how aerosols influence the microphysical properties of clouds. Here we present a computational scheme that can be used in connection with such measurements to assess the influence of the particle hygroscopicity and mixing state (in terms of the water uptake) on the cloud nucleating ability of particles. Additionally, it provides an estimate for the peak supersaturation of water vapour reached during the formation of the observed cloud(s). The method was applied in interpreting results of a measurement campaign that focused on aerosol-cloud interactions taking place at a subarctic background site located in Northern Finland (second Pallas Cloud Experiment, 2nd PaCE). A set of case studies was conducted, and the observed activation behavior could be successfully explained by a maximum supersaturation that varied between 0.18 and 0.26% depending on the case. In these cases, the diameter corresponding to the activated fraction of 50% was in the range of 110–140 nm, and the particles were only moderately water soluble with hygroscopic growth factors varying between 1.1 and 1.4. The conducted analysis showed that the activated fractions and the total number of particles acting as CCN are expected to be highly sensitive to the particle hygroscopic growth properties. For example, the latter quantity varied over a factor between 1.8 and 3.1, depending on the case, when the mean hygroscopic growth factors were varied by 10%. Another important conclusion is that size-dependent activation profiles carries information on the mixing state of particles.


2017 ◽  
Author(s):  
Jing Chen ◽  
Sri Hapsari Budisulistiorini ◽  
Takuma Miyakawa ◽  
Yuichi Komazaki ◽  
Mikinori Kuwata

Abstract. Diameter growth factors (GF) of 100 nm haze particles at 85 % relative humidity and chemical characteristics were simultaneously monitored at Singapore in October 2015 during a pervasive wildfire haze episode, which was caused by peatland burning in Indonesia. Non-refractory submicron particles (NR-PM1) were dominated by organics (approximating 77.1 % in total mass), whereas sulfate was the most abundant inorganic constituent (11.7 % on average). A statistical analysis of the organic mass spectra showed that most of organics (36.0 % of NR-PM1 mass) were highly oxygenated. Diurnal variations of GF, number fraction of highly hygroscopic mode particles, mass fraction of sulfate, and mass fraction of oxygenated organics (OOA) synchronized well, peaking during daytime. The mean hygroscopicity parameter (κ) of haze particles was 0.189 ± 0.087, and mean κ values of organics were 0.157 ± 0.108 (κorg, bulk organics) and 0.287 ± 0.193 (κOOA, OOA), demonstrating the important roles of both sulfate and highly oxygenated organics in hygroscopic growth of wildfire haze particles. κorg was also affected by the water-soluble organic fraction to some extent. These results show the importance of secondary formation processes in promoting water uptake properties of wildfire haze particles, including both inorganic and organic species. Further detailed size-resolved as well as molecular level chemical information of organics will be necessary for more profound exploration of water uptake by wildfire haze particles in Equatorial Asia.


2015 ◽  
Vol 15 (15) ◽  
pp. 8847-8869 ◽  
Author(s):  
E. F. Mikhailov ◽  
G. N. Mironov ◽  
C. Pöhlker ◽  
X. Chi ◽  
M. L. Krüger ◽  
...  

Abstract. In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in central Siberia (61° N, 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical compositions of aerosol particles were analyzed by x-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38 % of particulate matter (PM) in the accumulation mode and coarse mode, respectively. The water-soluble fraction of organic matter was estimated to be 52 and 8 % of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ~ 34 % in the accumulation mode vs. ~ 47 % in the coarse mode. The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5–99.4 % RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same relative humidity (RH), starting at ~ 70 %, while efflorescence occurred at different humidities, i.e., at ~ 35 % RH for submicron particles vs. ~ 50 % RH for supermicron particles. This ~ 15 % RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments. The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5–99.4 % RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv,ws value related to the water-soluble (ws) fraction was estimated to be ~ 0.15 for the accumulation mode and ~ 0.36 for the coarse mode, respectively. The obtained κv,ws for the accumulation mode is in good agreement with earlier data reported for remote sites in the Amazon rain forest (κv ≈ 0.15) and a Colorado mountain forest (κv ≈ 0.16 ). We used the Zdanovskii–Stokes–Robinson (ZSR) mixing rule to predict the chemical composition dependent hygroscopicity, κv,p. The obtained κv,p values overestimate the experimental FDHA-KIM-derived κv,ws by factors of 1.8 and 1.5 for the accumulation and coarse modes, respectively. This divergence can be explained by incomplete dissolution of the hygroscopic inorganic compounds resulting from kinetic limitations due to a sparingly soluble organic coating. The TEM and STXM-NEXAFS results indicate that aged submicron (> 300 nm) and supermicron aerosol particles possess core–shell structures with an inorganic core, and are enriched in organic carbon at the mixed particle surface. The direct FDHA kinetic studies provide a bulk diffusion coefficient of water of ~ 10−12 cm2 s−1 indicating a semi-solid state of the organic-rich phase leading to kinetic limitations of water uptake and release during hydration and dehydration cycles. Overall, the present ZOTTO data set, obtained in the growing season, has revealed a strong influence of organic carbon on the hygroscopic properties of the ambient aerosols. The sparingly soluble organic coating controls hygroscopic growth, phase transitions, and microstructural rearrangement processes. The observed kinetic limitations can strongly influence the outcome of experiments performed on multi-second timescales, such as the commonly applied HTDMA (Hygroscopicity Tandem Differential Mobility Analyzer) and CCNC (Cloud Condensation Nuclei Counter) measurements.


2014 ◽  
Vol 14 (20) ◽  
pp. 11165-11183 ◽  
Author(s):  
T. Lei ◽  
A. Zuend ◽  
W. G. Wang ◽  
Y. H. Zhang ◽  
M. F. Ge

Abstract. Hygroscopic behavior of organic compounds, including levoglucosan, 4-hydroxybenzoic acid, and humic acid, as well as their effects on the hygroscopic properties of ammonium sulfate (AS) in internally mixed particles are studied by a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds used represent pyrolysis products of wood that are emitted from biomass burning sources. It is found that humic acid aerosol particles only slightly take up water, starting at RH (relative humidity) above ~70%. This is contrasted by the continuous water absorption of levoglucosan aerosol particles in the range 5–90% RH. However, no hygroscopic growth is observed for 4-hydroxybenzoic acid aerosol particles. Predicted water uptake using the ideal solution theory, the AIOMFAC model and the E-AIM (with UNIFAC) model are consistent with measured hygroscopic growth factors of levoglucosan. However, the use of these models without consideration of crystalline organic phases is not appropriate to describe the hygroscopicity of organics that do not exhibit continuous water uptake, such as 4-hydroxybenzoic acid and humic acid. Mixed aerosol particles consisting of ammonium sulfate and levoglucosan, 4-hydroxybenzoic acid, or humic acid with different organic mass fractions, take up a reduced amount of water above 80% RH (above AS deliquescence) relative to pure ammonium sulfate aerosol particles of the same mass. Hygroscopic growth of mixtures of ammonium sulfate and levoglucosan with different organic mass fractions agree well with the predictions of the thermodynamic models. Use of the Zdanovskii–Stokes–Robinson (ZSR) relation and AIOMFAC model lead to good agreement with measured growth factors of mixtures of ammonium sulfate with 4-hydroxybenzoic acid assuming an insoluble organic phase. Deviations of model predictions from the HTDMA measurement are mainly due to the occurrence of a microscopical solid phase restructuring at increased humidity (morphology effects), which are not considered in the models. Hygroscopic growth factors of mixed particles containing humic acid are well reproduced by the ZSR relation. Lastly, the organic surrogate compounds represent a selection of some of the most abundant pyrolysis products of biomass burning. The hygroscopic growths of mixtures of the organic surrogate compounds with ammonium sulfate with increasing organics mass fraction representing ambient conditions from the wet to the dry seasonal period in the Amazon basin, exhibit significant water uptake prior to the deliquescence of ammonium sulfate. The measured water absorptions of mixtures of several organic surrogate compounds (including levoglucosan) with ammonium sulfate are close to those of binary mixtures of levoglucosan with ammonium sulfate, indicating that levoglucosan constitutes a major contribution to the aerosol water uptake prior to (and beyond) the deliquescence of ammonium sulfate. Hence, certain hygroscopic organic surrogate compounds can substantially affect the deliquescence point of ammonium sulfate and overall particle water uptake.


2019 ◽  
Vol 214 ◽  
pp. 116760 ◽  
Author(s):  
Simon L. Clegg ◽  
Lynn R. Mazzoleni ◽  
Vera Samburova ◽  
Nathan F. Taylor ◽  
Don R. Collins ◽  
...  

2004 ◽  
Vol 4 (1) ◽  
pp. 35-50 ◽  
Author(s):  
M. Gysel ◽  
E. Weingartner ◽  
S. Nyeki ◽  
D. Paulsen ◽  
U. Baltensperger ◽  
...  

Abstract. Ambient continental-rural fine aerosol (K-puszta, Hungary, PM1.5) was sampled on quartz fibre filters in winter and summer 2001. Water-soluble matter (WSM) was extracted in MilliQ-water, and, in a second step, solid phase extraction was used to isolate the less hydrophilic fraction (ISOM) of the water-soluble organic matter (WSOM) from remaining inorganic salts and "most" hydrophilic organic matter (MHOM). This approach allowed ISOM, which constitutes the major fraction of WSOM, to be isolated from ambient aerosols and investigated in pure form. Hygroscopic properties of both WSM and ISOM extracts as well as of aquatic reference fulvic and humic acids were investigated using a Hygroscopicity Tandem Differential Mobility Analyser (H-TDMA). ISOM deliquesced between 30% and 60% relative humidity (RH), and hygroscopic growth factors at 90% RH ranged from 1.08 to 1.17. The hygroscopicity of ISOM is comparable to secondary organic aerosols obtained in smog chamber experiments, but lower than the hygroscopicity of highly soluble organic acids. The hygroscopic behaviour of investigated fulvic and humic acids had similarities to ISOM, but hygroscopic growth factors were slightly smaller and deliquescence was observed at higher RH (75-85% and 85-95% RH for fulvic acid and humic acid, respectively). These differences probably originate from larger average molecular mass and lower solubility of fulvic and humic acids. Inorganic composition data, measured ISOM hygroscopicity, and a presumed value for the hygroscopicity of the small remaining MHOM fraction were used to predict hygroscopic growth of WSM extracts. Good agreement between model prediction and measured water uptake was observed with differences (by volume) ranging from +1% to -18%. While deliquescence properties of WSM extracts were mainly determined by the inorganic salts (42-53 wt % of WSM), the WSOM accounted for a significant fraction of particulate water. At 90% RH, according to model predictions and measurements, about 80-62% of particulate water in the samples are associated with inorganic salts and about 20-38% with WSOM. The relative contributions of both distinguished WSOM fractions, ISOM and MHOM, remains uncertain since MHOM was not available in isolated form, but the results suggest that the less abundant MHOM is also important due to its presumably larger hygroscopicity.


2015 ◽  
Vol 15 (8) ◽  
pp. 4045-4061 ◽  
Author(s):  
D. B. Atkinson ◽  
J. G. Radney ◽  
J. Lum ◽  
K. R. Kolesar ◽  
D. J. Cziczo ◽  
...  

Abstract. Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined here as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1–0.15 and 0.9–1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.


2003 ◽  
Vol 3 (5) ◽  
pp. 4879-4925 ◽  
Author(s):  
M. Gysel ◽  
E. Weingartner ◽  
S. Nyeki ◽  
D. Paulsen ◽  
U. Baltensperger ◽  
...  

Abstract. Ambient continental-rural fine aerosol (K-puszta, Hungary, PM1.5) was sampled on quartz fibre filters in winter and summer 2001. Water-soluble matter (WSM) was extracted in MilliQ-water, and, in a second step, solid phase extraction was used to isolate the less hydrophilic fraction (ISOM) of the water-soluble organic matter (WSOM) from inorganic salts and remaining most hydrophilic organic matter (MHOM). This approach allowed to investigate a major fraction of WSOM isolated in pure form from ambient aerosols. Hygroscopic properties of both WSM and ISOM extracts as well as of aquatic reference fulvic and humic acids were investigated using a Hygroscopicity Tandem Differential Mobility Analyser (H-TDMA). ISOM deliquesced between 40–60% and 30–55% relative humidity (RH), in winter and summer, respectively, and hygroscopic growth factors at 90% RH were 1.08–1.11 and 1.16–1.17. The hygroscopicity of ISOM is comparable to secondary organic aerosols obtained in smog chamber experiments, but lower than the hygroscopicity of highly soluble organic acids. Hygroscopic behaviour of investigated fulvic and humic acids had similarities to ISOM, but hygroscopic growth factors were slightly smaller and deliquescence was observed at higher RH (75–85% and 85–95% RH for fulvic acid and humic acid, respectively). These differences probably originate from larger average molecular weight and lower solubility of fulvic and humic acids. Inorganic composition data, measured ISOM hygroscopicity, and a presumable value for the hygroscopicity of the small remaining MHOM fraction were used to predict hygroscopic growth of WSM extracts. Good agreement between model prediction and measured water uptake was observed with differences (by volume) of +1% and −5% in winter, and −18% and −12% in summer. While deliquescence properties of WSM extracts were mainly determined by the inorganic salts (42–53 wt \\% of WSM), the WSOM accounted for a significant fraction of particulate water. At 90% RH, according to model predictions and measurements, about 80% (62%) of particulate water in winter (summer) samples are associated with inorganic salts and about 20% (38%) with WSOM. The relative contributions of both distinguished WSOM fractions, ISOM and MHOM, remains uncertain since MHOM was not available in isolated form, but the results suggest that the less abundant MHOM is also important due to its presumably larger hygroscopicity.


2013 ◽  
Vol 13 (17) ◽  
pp. 8973-8989 ◽  
Author(s):  
I. R. Zamora ◽  
M. Z. Jacobson

Abstract. The hygroscopic growth of atmospheric particles affects atmospheric chemistry and Earth's climate. Water-soluble organic carbon (WSOC) constitutes a significant fraction of the dry submicron mass of atmospheric aerosols, thus affecting their water uptake properties. Although the WSOC fraction is comprised of many compounds, a set of model substances can be used to describe its behavior. For this study, mixtures of Nordic aquatic fulvic acid reference (NAFA) and Fluka humic acid (HA), with various combinations of inorganic salts (sodium chloride and ammonium sulfate) and other representative organic compounds (levoglucosan and succinic acid), were studied. We measured the equilibrium water vapor pressure over bulk solutions of these mixtures as a function of temperature and solute concentration. New water activity (aw) parameterizations and hygroscopic growth curves at 25 °C were calculated from these data for particles of equivalent composition. We examined the effect of temperature on the water activity and found a maximum variation of 9% in the 0–30 °C range, and 2% in the 20–30 °C range. Five two-component mixtures were studied to understand the effect of adding a humic substance (HS), such as NAFA and HA, to an inorganic salt or a saccharide. The deliquescence point at 25 °C for HS-inorganic mixtures did not change significantly from that of the pure inorganic species. However, the hygroscopic growth of HA / inorganic mixtures was lower than that exhibited by the pure salt, in proportion to the added mass of HA. The addition of NAFA to a highly soluble solute (ammonium sulfate, sodium chloride or levoglucosan) in water had the same effect as the addition of HA to the inorganic species for most of the water activity range studied. Yet, the water uptake of these NAFA mixtures transitioned to match the growth of the pure salt or saccharide at high aw values. The remaining four mixtures were based on chemical composition data for different aerosol types. As expected, the two solutions representing organic aerosols (40% HS/40% succinic acid/20% levoglucosan) showed lower water uptake than the two solutions representing biomass burning aerosols (25% HS/27% succinic acid/18% levoglucosan/30% ammonium sulfate). However, interactions in multicomponent solutions may be responsible for the large variation of the relative water uptake of identical mixtures containing different HSs above a water activity of 0.95. The ZSR (Zdanovskii, Stokes, and Robinson) model was able to predict reasonably well the hygroscopic growth of all the mixtures below aw = 0.95, but produced large deviations for some multicomponent mixtures at higher values.


2013 ◽  
Vol 13 (1) ◽  
pp. 2035-2075 ◽  
Author(s):  
Z. Jurányi ◽  
T. Tritscher ◽  
M. Gysel ◽  
M. Laborde ◽  
L. Gomes ◽  
...  

Abstract. Ambient aerosols are a complex mixture of particles with different physical and chemical properties and consequently distinct hygroscopic behaviour. The hygroscopicity of a particle determines its water uptake at subsaturated relative humidity (RH) and its ability to form a cloud droplet at supersaturated RH. These processes influence the Earth's climate and the atmospheric lifetime of the particles. Cloud condensation nuclei (CCN) number size distributions (i.e. CCN number concentrations as a function of dry particle diameter) were measured close to Paris during the MEGAPOLI campaign in January–February 2010 covering 10 different supersaturations (SS = 0.1–1.0%). The time-resolved hygroscopic mixing state with respect to CCN activation was also derived from these measurements. Simultaneously, a Hygroscopicity Tandem Differential Mobility Analyser (HTDMA) was used to measure the hygroscopic growth factor (ratio of wet to dry mobility diameter) distributions at RH = 90%. The aerosol was highly externally mixed and its mixing state showed significant temporal variability. The average particle hygroscopicity was relatively low at subsaturation, RH = 90% (mean hygroscopicity parameter κ = 0.12–0.27) and increased with increasing dry diameter in the range 35–265 nm. The mean κ value, derived from the CCN measurements at supersaturation, ranged from 0.08 to 0.24 at SS = 1.0–0.%. Two types of mixing state resolved hygroscopicity closure studies were performed comparing the water uptake ability measured below and above saturation. In the first type the CCN counter was coupled with the HTDMA and closure was achieved over the whole range of probed dry diameters, growth factors and supersaturations using the κ-parameterisation for the water activity and assuming surface tension of pure water in the Köhler theory. In the second closure type we compared hygroscopicity distributions derived from parallel monodisperse CCN measurements and HTDMA measurements. Very good agreement was found at all supersaturations which shows that monodisperse CCN measurements are a reliable alternative to determine the hygroscopic mixing state of ambient aerosols.


Sign in / Sign up

Export Citation Format

Share Document