Influence of water filtration on the determination of a wide range of dissolved contaminants at parts-per-trillion levels

2007 ◽  
Vol 583 (1) ◽  
pp. 202-209 ◽  
Author(s):  
Anna Gómez-Gutiérrez ◽  
Eric Jover ◽  
Josep M. Bayona ◽  
Joan Albaigés
2017 ◽  
Vol 15 (1) ◽  
pp. 21
Author(s):  
Haryo Suganda ◽  
Raja Muhammad Amin

This study is motivated the identification of policies issued by the regional Governmentof Rokan Hulu in the form of Regulatory region number 1 by 2015 on the determination of thevillage and Indigenous Village. Political dynamics based on various interests against themanufacture of, and decision-making in the process of formation of the corresponding localregulations determination of Indigenous Villages in the Rokan Hulu is impacted to a verysignificantamount of changes from the initial draft of the number i.e. 21 (twenty one) the villagebecame Customary 89 (eighty-nine) the Indigenous Villages who have passed. Type of thisresearch is a qualitative descriptive data analysis techniques. The research aims to describe theState of the real situation in a systematic and accurate fact analysis unit or related research, aswell as observations of the field based on the data (information). Method of data collectionwas done with interviews, documentation, and observations through fieldwork (field research).The results of the research on the process of discussion of the draft local regulations andmutual agreement about Designation of Indigenous Villages in the Rokan Hulu is, showed thatthe political dynamics that occur due to the presence of various political interests, rejectionorally by Villagers who were judged to have met the requirements of Draft Regulations to beformulated and the area for the set to be Indigenous Villages, and also there is a desire fromsome villages in the yet to Draft local regulations in order to set the Indigenous village , there isa wide range of interests of these aspects influenced the agreement to assign the entire localVillage which is in the Rokan Hulu become Indigenous village, and the village of Transmigrationinto administrative Villages where the initiator of the changes in the number of IndigenousVillages in the Rokan Hulu it is the desire of the local Government of its own.


Author(s):  
Hernâni Marques ◽  
Pedro Cruz-Vicente ◽  
Tiago Rosado ◽  
Mário Barroso ◽  
Luís A. Passarinha ◽  
...  

Environmental tobacco smoke exposure (ETS) and smoking have been described as the most prevalent factors in the development of certain diseases worldwide. According to the World Health Organization, more than 8 million people die every year due to exposure to tobacco, around 7 million due to direct ETS and the remaining due to exposure to second-hand smoke. Both active and second-hand exposure can be measured and controlled using specific biomarkers of tobacco and its derivatives, allowing the development of more efficient public health policies. Exposure to these compounds can be measured using different methods (involving for instance liquid- or gas-chromatographic procedures) in a wide range of biological specimens to estimate the type and degree of tobacco exposure. In recent years, a lot of research has been carried out using different extraction methods and different analytical equipment; this way, liquid–liquid extraction, solid-phase extraction or even miniaturized procedures have been used, followed by chromatographic analysis coupled mainly to mass spectrometric detection. Through this type of methodologies, second-hand smokers can be distinguished from active smokers, and this is also valid for e-cigarettes and vapers, among others, using their specific biomarkers. This review will focus on recent developments in the determination of tobacco smoke biomarkers, including nicotine and other tobacco alkaloids, specific nitrosamines, polycyclic aromatic hydrocarbons, etc. The methods for their detection will be discussed in detail, as well as the potential use of threshold values to distinguish between types of exposure.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 37
Author(s):  
Mayra K. S. Monteiro ◽  
Djalma R. Da Silva ◽  
Marco A. Quiroz ◽  
Vítor J. P. Vilar ◽  
Carlos A. Martínez-Huitle ◽  
...  

This study aims to investigate the applicability of a hybrid electrochemical sensor composed of cork and graphite (Gr) for detecting caffeine in aqueous solutions. Raw cork (RAC) and regranulated cork (RGC, obtained by thermal treatment of RAC with steam at 380 °C) were tested as modifiers. The results clearly showed that the cork-graphite sensors, GrRAC and GrRGC, exhibited a linear response over a wide range of caffeine concentration (5–1000 µM), with R2 of 0.99 and 0.98, respectively. The limits of detection (LOD), estimated at 2.9 and 6.1 µM for GrRAC and GrRGC, suggest greater sensitivity and reproducibility than the unmodified conventional graphite sensor. The low-cost cork-graphite sensors were successfully applied in the determination of caffeine in soft drinks and pharmaceutical formulations, presenting well-defined current signals when analyzing real samples. When comparing electrochemical determinations and high performance liquid chromatography measurements, no significant differences were observed (mean accuracy 3.0%), highlighting the potential use of these sensors to determine caffeine in different samples.


Author(s):  
Vladimir G. Dedkov ◽  
N’Faly Magassouba ◽  
Olga A. Stukolova ◽  
Victoria A. Savina ◽  
Jakob Camara ◽  
...  

Acute febrile illnesses occur frequently in Guinea. Acute fever itself is not a unique, hallmark indication (pathognomonic sign) of any one illness or disease. In the infectious disease context, fever’s underlying cause can be a wide range of viral or bacterial pathogens, including the Ebola virus. In this study, molecular and serological methods were used to analyze samples from patients hospitalized with acute febrile illness in various regions of Guinea. This analysis was undertaken with the goal of accomplishing differential diagnosis (determination of causative pathogen) in such cases. As a result, a number of pathogens, both viral and bacterial, were identified in Guinea as causative agents behind acute febrile illness. In approximately 60% of the studied samples, however, a definitive determination could not be made.


Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 80
Author(s):  
Dmitry V. Vedernikov ◽  
Alexander N. Shanygin ◽  
Yury S. Mirgorodsky ◽  
Mikhail D. Levchenkov

This publication presents the results of complex parametrical strength investigations of typical wings for regional aircrafts obtained by means of the new version of the four-level algorithm (FLA) with the modified module responsible for the analysis of aerodynamic loading. This version of FLA, as well as a base one, is focused on significant decreasing time and labor input of a complex strength analysis of airframes by using simultaneously different principles of decomposition. The base version includes four-level decomposition of airframe and decomposition of strength tasks. The new one realizes additional decomposition of alternative variants of load cases during the process of determination of critical load cases. Such an algorithm is very suitable for strength analysis and designing airframes of regional aircrafts having a wide range of aerodynamic concepts. Results of validation of the new version of FLA for a high-aspect-ratio wing obtained in this work confirmed high performance of the algorithm in decreasing time and labor input of strength analysis of airframes at the preliminary stages of designing. During parametrical design investigation, some interesting results for strut-braced wings having high aspect ratios were obtained.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 278
Author(s):  
Jennifer Lagoutte-Renosi ◽  
Bernard Royer ◽  
Vahideh Rabani ◽  
Siamak Davani

Ticagrelor is an antiplatelet agent which is extensively metabolized in an active metabolite: AR-C124910XX. Ticagrelor antagonizes P2Y12 receptors, but recently, this effect on the central nervous system has been linked to the development of dyspnea. Ticagrelor-related dyspnea has been linked to persistently high plasma concentrations of ticagrelor. Therefore, there is a need to develop a simple, rapid, and sensitive method for simultaneous determination of ticagrelor and its active metabolite in human plasma to further investigate the link between concentrations of ticagrelor, its active metabolite, and side effects in routine practice. We present here a new method of quantifying both molecules, suitable for routine practice, validated according to the latest Food and Drug Administration (FDA) guidelines, with a good accuracy and precision (<15% respectively), except for the lower limit of quantification (<20%). We further describe its successful application to plasma samples for a population pharmacokinetics study. The simplicity and rapidity, the wide range of the calibration curve (2–5000 µg/L for ticagrelor and its metabolite), and high throughput make a broad spectrum of applications possible for our method, which can easily be implemented for research, or in daily routine practice such as therapeutic drug monitoring to prevent overdosage and occurrence of adverse events in patients.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 930
Author(s):  
Fahimeh Hadavimoghaddam ◽  
Mehdi Ostadhassan ◽  
Ehsan Heidaryan ◽  
Mohammad Ali Sadri ◽  
Inna Chapanova ◽  
...  

Dead oil viscosity is a critical parameter to solve numerous reservoir engineering problems and one of the most unreliable properties to predict with classical black oil correlations. Determination of dead oil viscosity by experiments is expensive and time-consuming, which means developing an accurate and quick prediction model is required. This paper implements six machine learning models: random forest (RF), lightgbm, XGBoost, multilayer perceptron (MLP) neural network, stochastic real-valued (SRV) and SuperLearner to predict dead oil viscosity. More than 2000 pressure–volume–temperature (PVT) data were used for developing and testing these models. A huge range of viscosity data were used, from light intermediate to heavy oil. In this study, we give insight into the performance of different functional forms that have been used in the literature to formulate dead oil viscosity. The results show that the functional form f(γAPI,T), has the best performance, and additional correlating parameters might be unnecessary. Furthermore, SuperLearner outperformed other machine learning (ML) algorithms as well as common correlations that are based on the metric analysis. The SuperLearner model can potentially replace the empirical models for viscosity predictions on a wide range of viscosities (any oil type). Ultimately, the proposed model is capable of simulating the true physical trend of the dead oil viscosity with variations of oil API gravity, temperature and shear rate.


Separations ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 35
Author(s):  
Jason Hoisington ◽  
Jason S. Herrington

A canister-based sampling method along with preconcentrator-Gas chromatography-Mass Spectrometry (GC-MS) analysis was applied to ethylene oxide (EtO or EO) and 75 other volatile organic compounds (VOCs) in ambient air. Ambient air can contain a large variety of VOCs, and thorough analysis requires non-discriminatory sampling and a chromatographic method capable of resolving a complex mixture. Canister collection of whole air samples allows for the collection of a wide range of volatile compounds, while the simultaneous analysis of ethylene oxide and other VOCs allows for faster throughput than separate methods. The method presented is based on US EPA Method TO-15A and allows for the detection of EtO from 18 to 2500 pptv. The method has an average accuracy of 104% and precision of 13% relative standard deviation (RSD), with an instrument run time of 32 min. In addition, a link between canister cleanliness and ethylene oxide growth is observed, and potential mechanisms and cleaning strategies are addressed.


2014 ◽  
Vol 526 ◽  
pp. 46-51
Author(s):  
Li Xiong Zhang ◽  
Rong Gang Gao

Based on the traditional theory of transient plane source for thermal conductivity measurement, this paper designed and developed a new pattern of heating and temperature sensing probe, presented the study of transient heat conduction of half-infinite plane while being heated, established a modified mathematical model of transient plane source method, and achieved the measurement of thermal conductivity of automotive interior material sample by the data processing method of mathematical iteration and liner regression using the modified transient plane source probe. According to the data of experiments, the instrument which this paper designed has a high precision of 5% and a wide range of 0.003-1W/(mK).This paper provides a practicable way for heat capacity determination of automotive interior materials.


Sign in / Sign up

Export Citation Format

Share Document