scholarly journals Parameterization of convective transport in the boundary layer and its impact on the representation of the diurnal cycle of wind and dust emissions

2015 ◽  
Vol 15 (12) ◽  
pp. 6775-6788 ◽  
Author(s):  
F. Hourdin ◽  
M. Gueye ◽  
B. Diallo ◽  
J.-L. Dufresne ◽  
J. Escribano ◽  
...  

Abstract. We investigate how the representation of the boundary layer in a climate model impacts the representation of the near-surface wind and dust emission, with a focus on the Sahel/Sahara region. We show that the combination of vertical turbulent diffusion with a representation of the thermal cells of the convective boundary layer by a mass flux scheme leads to realistic representation of the diurnal cycle of wind in spring, with a maximum near-surface wind in the morning. This maximum occurs when the thermal plumes reach the low-level jet that forms during the night at a few hundred meters above surface. The horizontal momentum in the jet is transported downward to the surface by compensating subsidence around thermal plumes in typically less than 1 h. This leads to a rapid increase of wind speed at surface and therefore of dust emissions owing to the strong nonlinearity of emission laws. The numerical experiments are performed with a zoomed and nudged configuration of the LMDZ general circulation model coupled to the emission module of the CHIMERE chemistry transport model, in which winds are relaxed toward that of the ERA-Interim reanalyses. The new set of parameterizations leads to a strong improvement of the representation of the diurnal cycle of wind when compared to a previous version of LMDZ as well as to the reanalyses used for nudging themselves. It also generates dust emissions in better agreement with current estimates, but the aerosol optical thickness is still significantly underestimated.

2014 ◽  
Vol 14 (19) ◽  
pp. 27425-27458 ◽  
Author(s):  
F. Hourdin ◽  
M. Gueye ◽  
B. Diallo ◽  
J.-L. Dufresne ◽  
L. Menut ◽  
...  

Abstract. We investigate the impact of the representation of the boundary layer transport in a climate model on the representation of the near surface wind and dust emission, with a focus on the Sahel/Sahara region. We show that the combination of vertical turbulent diffusion with a representation of the thermal cells of the convective boundary layer by a mass flux scheme leads to a more realistic representation of the diurnal cycle of wind in spring, with a maximum near surface wind in the morning. This maximum occurs when the thermal plumes reach the low level jet that forms during the night at a few hundred meters above surface. The horizontal momentum in the jet is transported downward to the surface by compensating subsidences around thermal plumes in typically less than one hour. This leads to a rapid increase of wind speed at surface and therefore of dust emissions owing to the strong non linearity of emission laws. The numerical experiments are performed with a zoomed and nudged configuration of the LMDZ general circulation model, coupled to the emission module of the CHIMERE Chemistry Transport Model, in which winds are relaxed toward that of the ERAI reanalyzes. The new set of parameterizations leads to a strong improvement of the representation of the diurnal cycle of wind when compared to a previous version of LMDZ as well as to the reanalyzes used for nudging themselves. It also reinforces dust emissions in better agreement with observations, but the aerosol optical thickness is still significantly underestimated.


2010 ◽  
Vol 10 (8) ◽  
pp. 3463-3478 ◽  
Author(s):  
C. Rio ◽  
F. Hourdin ◽  
A. Chédin

Abstract. The thermal plume model, a mass-flux scheme originally developed to represent the vertical transport by convective structures within the boundary layer, is adapted to the representation of plumes generated by fires, with the aim of estimating the height at which fire emissions are actually injected in the atmosphere. The parameterization, which takes into account the excess of near surface temperature induced by fires and the mixing between convective plumes and environmental air, is first evaluated on two well-documented fires. Simulations over Southern Africa performed with the general circulation model LMDZ over one month show that the CO2 can be injected far above the boundary layer height, leading to a daily excess of CO2 in the mid-troposphere of an order of 2 ppmv. These results agree with satellite retrievals of a diurnal cycle of CO2 in the free troposphere over regions affected by biomass burning in the Tropics.


2010 ◽  
Vol 138 (9) ◽  
pp. 3434-3453 ◽  
Author(s):  
Jeffrey J. Ploshay ◽  
Ngar-Cheung Lau

Abstract The simulation of the diurnal cycle (DC) of precipitation and surface wind pattern by a general circulation model (GCM) with a uniform horizontal resolution of 50 km over the global domain is evaluated. The model output is compared with observational counterparts based on datasets provided by the Tropical Rainfall Measuring Mission and reanalysis products of the European Centre for Medium-Range Weather Forecasts. The summertime diurnal characteristics over tropical regions in Asia, the Americas, and Africa are portrayed using the amplitude and phase of the first harmonic of the 24-h cycle, departures of data fields during selected hours from the daily mean, and differences between extreme phases of the DC. There is general agreement between the model and observations with respect to the large-scale land–sea contrasts in the DC. Maximum land precipitation, onshore flows, and landward migration of rainfall signals from the coasts occur in the afternoon, whereas peak maritime rainfall and offshore flows prevail in the morning. Seaward migration of precipitation is discernible over the western Bay of Bengal and South China Sea during nocturnal and morning hours. The evolution from low-intensity rainfall in the morning/early afternoon to heavier precipitation several hours later is also evident over selected continental sites. However, the observed incidence of rainfall with very high intensity in midafternoon is not reproduced in the model atmosphere. Although the model provides an adequate simulation of the daytime upslope and nighttime downslope winds in the vicinity of mountain ranges, valleys, and basins, there are notable discrepancies between model and observations in the DC of precipitation near some of these orographic features. The model does not reproduce the observed seaward migration of precipitation from the western coasts of Myanmar (Burma) and India, and from individual islands of the Indonesian Archipelago at nighttime.


2019 ◽  
Vol 76 (4) ◽  
pp. 1055-1076 ◽  
Author(s):  
Cheikh O. Mbengue ◽  
Tim Woollings

Abstract Simulations using a dry, idealized general circulation model (GCM) are conducted to systematically investigate the eddy-driven jet’s sensitivity to the location of boundary layer drag. Perturbations of boundary layer drag solely within the baroclinic zone reproduce the eddy-driven jet responses to global drag variations. The implications for current theories of eddy-driven jet shifts are discussed. Hemispherically asymmetric drag simulations in equinoctial and solstitial thermal conditions show that perturbations of surface drag in one hemisphere have negligible effects on the strength and latitude of the eddy-driven jet in the opposite hemisphere. Jet speed exhibits larger sensitivities to surface drag in perpetual winter simulations, while sensitivities in jet latitude are larger in perpetual summer simulations. Near-surface drag simulations with an Earthlike continental profile show how surface drag may facilitate tropical–extratropical teleconnections by modifying waveguides through changes in jet latitude. Longitudinally confined drag simulations demonstrate a novel mechanism for localizing storm tracks. A theoretical analysis is used to show that asymmetries in the Bernoulli function within the baroclinic zone are important for the eddy-driven jet latitude responses because they directly modulate the sensitivity of the zonal-mean zonal wind to drag in the boundary layer momentum balance. The simulations contained herein provide a rich array of case studies against which to test current theories of eddy-driven jet and storm-track shifts, and the results affirm the importance of correct, well-constrained locations and intensities of boundary layer drag in order to reduce jet and storm-track biases in climate and forecast models.


2009 ◽  
Vol 9 (5) ◽  
pp. 18659-18704 ◽  
Author(s):  
C. Rio ◽  
F. Hourdin ◽  
A. Chédin

Abstract. The thermal plume model, a mass-flux scheme originally developed to represent the vertical transport by convective structures within the boundary layer, is adapted to the representation of plumes generated by fires, with the aim of estimating the height at which fire emissions are actually injected in the atmosphere. The parameterization, which takes into account fire characteristics, the induced excess of near surface temperature and mixing with environmental air, is first evaluated on two well-documented fires. Simulations over Southern Africa performed with the general circulation model LMDZ over one month show that the CO2 can be injected far above the boundary layer height, leading to a daily excess of CO2 in the mid-troposphere of an order of 2 ppmv. These results agree with satellite retrievals of a diurnal cycle of CO2 in the free troposphere over regions affected by biomass burning in the Tropics.


2013 ◽  
Vol 26 (1) ◽  
pp. 26-44 ◽  
Author(s):  
Jenny Lindvall ◽  
Gunilla Svensson ◽  
Cecile Hannay

Abstract This paper describes the performance of the Community Atmosphere Model (CAM) versions 4 and 5 in simulating near-surface parameters. CAM is the atmospheric component of the Community Earth System Model (CESM). Most of the parameterizations in the two versions are substantially different, and that is also true for the boundary layer scheme: CAM4 employs a nonlocal K-profile scheme, whereas CAM5 uses a turbulent kinetic energy (TKE) scheme. The evaluation focuses on the diurnal cycle and global observational and reanalysis datasets are used together with multiyear observations from 35 flux tower sites, providing high-frequency measurements in a range of different climate zones. It is found that both model versions capture the timing of the diurnal cycle but considerably overestimate the diurnal amplitude of net radiation, temperature, wind, and turbulent heat fluxes. The seasonal temperature range at mid- and high latitudes is also overestimated with too warm summer temperatures and too cold winter temperatures. The diagnosed boundary layer is deeper in CAM5 over ocean in regions with low-level marine clouds as a result of the turbulence generated by cloud-top cooling. Elsewhere, the boundary layer is in general shallower in CAM5. The two model versions differ substantially in their representation of near-surface wind speeds over land. The low-level wind speed in CAM5 is about half as strong as in CAM4, and the difference is even larger in areas where the subgrid-scale terrain is significant. The reason is the turbulent mountain stress parameterization, only applied in CAM5, which acts to increase the surface stress and thereby reduce the wind speed.


2007 ◽  
Vol 135 (4) ◽  
pp. 1474-1489 ◽  
Author(s):  
O. Coindreau ◽  
F. Hourdin ◽  
M. Haeffelin ◽  
A. Mathieu ◽  
C. Rio

Abstract The Laboratoire de Météorologie Dynamique atmospheric general circulation model with zooming capability (LMDZ) has been used in a nudged mode to enable comparison of model outputs with routine observations and evaluate the model physical parameterizations. Simulations have been conducted with a stretched grid refined over the vicinity of Paris, France, where observations, collected at the Trappes station (Météo-France) and at the Site Instrumental de Recherche par Télédétection Atmosphérique observatory, are available. For the purpose of evaluation of physical parameterizations, the large-scale component of the modeled circulation is adjusted toward ECMWF analyses outside the zoomed area only, whereas the inside region can evolve freely. A series of sensitivity experiments have been performed with different parameterizations of land surface and boundary layer processes. Compared with previous versions of the LMDZ model, a “thermal plume model,” in association with a constant resistance to evaporation improves agreement with observations. The new parameterization significantly improves the representation of seasonal and diurnal cycles of near-surface meteorology, the day-to-day variability of planetary boundary layer height, and the cloud radiative forcing. This study emphasizes the potential of using a climate model with a nudging and zooming capability to assess model physical parameterizations.


Author(s):  
Yuqing Wang ◽  
Yuanlong Li ◽  
Jing Xu

AbstractIn this study, the boundary-layer tangential wind budget equation following the radius of maximum wind, together with an assumed thermodynamical quasi-equilibrium boundary layer is used to derive a new equation for tropical cyclone (TC) intensification rate (IR). A TC is assumed to be axisymmetric in thermal wind balance with eyewall convection becoming in moist slantwise neutrality in the free atmosphere above the boundary layer as the storm intensifies as found recently based on idealized numerical simulations. An ad-hoc parameter is introduced to measure the degree of congruence of the absolute angular momentum and the entropy surfaces. The new IR equation is evaluated using results from idealized ensemble full-physics axisymmetric numerical simulations. Results show that the new IR equation can reproduce the time evolution of the simulated TC intensity. The new IR equation indicates a strong dependence of IR on both TC intensity and the corresponding maximum potential intensity (MPI). A new finding is the dependence of TC IR on the square of the MPI in terms of the near-surface wind speed for any given relative intensity. Results from some numerical integrations of the new IR equation also suggest the finite-amplitude nature of TC genesis. In addition, the new IR theory is also supported by some preliminary results based on best-track TC data over the North Atlantic and eastern and western North Pacific. Compared with the available time-dependent theories of TC intensification, the new IR equation can provide a realistic intensity-dependent IR during weak intensity stage as in observations.


2017 ◽  
Vol 122 (13) ◽  
pp. 6818-6843 ◽  
Author(s):  
Etienne Vignon ◽  
Frédéric Hourdin ◽  
Christophe Genthon ◽  
Hubert Gallée ◽  
Eric Bazile ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document