scholarly journals Mercury oxidation from bromine chemistry in the free troposphere over the southeastern US

2016 ◽  
Vol 16 (6) ◽  
pp. 3743-3760 ◽  
Author(s):  
Sean Coburn ◽  
Barbara Dix ◽  
Eric Edgerton ◽  
Christopher D. Holmes ◽  
Douglas Kinnison ◽  
...  

Abstract. The elevated deposition of atmospheric mercury over the southeastern United States is currently not well understood. Here we measure partial columns and vertical profiles of bromine monoxide (BrO) radicals, a key component of mercury oxidation chemistry, to better understand the processes and altitudes at which mercury is being oxidized in the atmosphere. We use data from a ground-based MAX-DOAS instrument located at a coastal site ∼  1 km from the Gulf of Mexico in Gulf Breeze, FL, where we had previously detected tropospheric BrO (Coburn et al., 2011). Our profile retrieval assimilates information about stratospheric BrO from the WACCM chemical transport model (CTM), and uses only measurements at moderately low solar zenith angles (SZAs) to estimate the BrO slant column density contained in the reference spectrum (SCDRef). The approach has 2.6 degrees of freedom, and avoids spectroscopic complications that arise at high SZA; knowledge about SCDRef further helps to maximize sensitivity in the free troposphere (FT). A cloud-free case study day with low aerosol load (9 April 2010) provided optimal conditions for distinguishing marine boundary layer (MBL: 0–1 km) and free-tropospheric (FT: 1–15 km) BrO from the ground. The average daytime tropospheric BrO vertical column density (VCD) of ∼  2.3  ×  1013 molec cm−2 (SZA  <  70°) is consistent with our earlier reports on other days. The vertical profile locates essentially all tropospheric BrO above 4 km, and shows no evidence for BrO inside the MBL (detection limit  <  0.5 pptv). BrO increases to  ∼  3.5 pptv at 10–15 km altitude, consistent with recent aircraft observations. Our case study day is consistent with recent aircraft studies, in that the oxidation of gaseous elemental mercury (GEM) by bromine radicals to form gaseous oxidized mercury (GOM) is the dominant pathway for GEM oxidation throughout the troposphere above Gulf Breeze. The column integral oxidation rates are about 3.6  × 105 molec cm−2 s−1 for bromine, while the contribution from ozone (O3) is 0.8  ×  105 molec cm−2 s−1. Chlorine-induced oxidation is estimated to add  <  5 % to these mercury oxidation rates. The GOM formation rate is sensitive to recently proposed atmospheric scavenging reactions of the HgBr adduct by nitrogen dioxide (NO2), and to a lesser extent also HO2 radicals. Using a 3-D CTM, we find that surface GOM variations are also typical of other days, and are mainly derived from the FT. Bromine chemistry is active in the FT over Gulf Breeze, where it forms water-soluble GOM that is subsequently available for wet scavenging by thunderstorms or transport to the boundary layer.

2015 ◽  
Vol 15 (20) ◽  
pp. 28317-28360 ◽  
Author(s):  
S. Coburn ◽  
B. Dix ◽  
E. Edgerton ◽  
C. D. Holmes ◽  
D. Kinnison ◽  
...  

Abstract. The elevated deposition of atmospheric mercury over the Southeastern United States is currently not well understood. Here we measure partial columns and vertical profiles of bromine monoxide (BrO) radicals, a key component of mercury oxidation chemistry, to better understand the processes and altitudes at which mercury is being oxidized in the atmosphere. We use the data from a ground-based MAX-DOAS instrument located at a coastal site ~ 1 km from the Gulf of Mexico in Gulf Breeze, FL, where we had previously detected tropospheric BrO (Coburn et al., 2011). Our profile retrieval assimilates information about stratospheric BrO from the WACCM chemical transport model, and uses only measurements at moderately low solar zenith angles (SZA) to estimate the BrO slant column density contained in the reference spectrum (SCDRef). The approach has 2.6 degrees of freedom, and avoids spectroscopic complications that arise at high SZA; knowledge about SCDRef helps to maximize sensitivity in the free troposphere (FT). A cloud-free case study day with low aerosol load (9 April 2010) provided optimal conditions for distinguishing marine boundary layer (MBL: 0–1 km) and free tropospheric (FT: 1–15 km) BrO from the ground. The average daytime tropospheric BrO vertical column density (VCD) of ~ 2.3 × 1013 molec cm−2 (SZA < 70°) is consistent with our earlier reports on other days. The vertical profile locates essentially all tropospheric BrO above 4 km, and shows no evidence for BrO inside the MBL (detection limit < 0.5 pptv). BrO increases in the FT. The average FT-BrO mixing ratio was ~ 0.9 pptv between 1–15 km, consistent with recent aircraft observations. We find that the oxidation of gaseous elemental mercury (GEM) by bromine radicals to form gaseous oxidized mercury (GOM) is the dominant pathway for GEM oxidation throughout the troposphere above Gulf Breeze. The column integral oxidation rates range from 3.0–3.4 × 105 molec cm−2 s−1 for bromine, while contributions from ozone (O3) and chlorine (Cl) were 0.9 × 105 and 0.2 × 105 molec cm−2 s−1, respectively. The GOM formation rate is sensitive to recently proposed atmospheric scavenging reactions of the HgBr adduct by nitrogen dioxide (NO2), and to a lesser extent also HO2 radicals. Using a 3-D chemical transport model, we find that surface GOM variations are typical also of other days, and are mainly derived from the free troposphere. Bromine chemistry is active in the FT over Gulf Breeze, where it forms water-soluble GOM that is subsequently available for wet scavenging by thunderstorms or transport to the boundary layer.


2015 ◽  
Vol 8 (5) ◽  
pp. 2121-2148 ◽  
Author(s):  
R. Volkamer ◽  
S. Baidar ◽  
T. L. Campos ◽  
S. Coburn ◽  
J. P. DiGangi ◽  
...  

Abstract. Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO) and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2), water vapor (H2O) and O2–O2 collision complexes (O4) were measured by the University of Colorado Airborne Multi-AXis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument, aerosol extinction by high spectral resolution lidar (HSRL), in situ aerosol size distributions by an ultra high sensitivity aerosol spectrometer (UHSAS) and in situ H2O by vertical-cavity surface-emitting laser (VCSEL) hygrometer. Data are presented from two research flights (RF12, RF17) aboard the National Science Foundation/National Center for Atmospheric Research Gulfstream V aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project (January/February 2012). We assess the accuracy of O4 slant column density (SCD) measurements in the presence and absence of aerosols. Our O4-inferred aerosol extinction profiles at 477 nm agree within 6% with HSRL in the boundary layer and closely resemble the renormalized profile shape of Mie calculations constrained by UHSAS at low (sub-Rayleigh) aerosol extinction in the free troposphere. CU AMAX-DOAS provides a flexible choice of geometry, which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise ratio) and to test the robustness of BrO, IO and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01) and provides independent validation data from ship-based in situ cavity-enhanced DOAS and MAX-DOAS. Inside the marine boundary layer (MBL) no BrO was detected (smaller than 0.5 pptv), and 0.2–0.55 pptv IO and 32–36 pptv glyoxal were observed. The near-surface concentrations agree within 30% (IO) and 10% (glyoxal) between ship and aircraft. The BrO concentration strongly increased with altitude to 3.0 pptv at 14.5 km (RF12, 9.1 to 8.6° N; 101.2 to 97.4° W). At 14.5 km, 5–10 pptv NO2 agree with model predictions and demonstrate good control over separating tropospheric from stratospheric absorbers (NO2 and BrO). Our profile retrievals have 12–20 degrees of freedom (DoF) and up to 500 m vertical resolution. The tropospheric BrO vertical column density (VCD) was 1.5 × 1013 molec cm−2 (RF12) and at least 0.5 × 1013 molec cm−2 (RF17, 0–10 km, lower limit). Tropospheric IO VCDs correspond to 2.1 × 1012 molec cm−2 (RF12) and 2.5 × 1012 molec cm−2 (RF17) and glyoxal VCDs of 2.6 × 1014 molec cm−2 (RF12) and 2.7 × 1014 molec cm−2 (RF17). Surprisingly, essentially all BrO as well as the dominant IO and glyoxal VCD fraction was located above 2 km (IO: 58 ± 5%, 0.1–0.2 pptv; glyoxal: 52 ± 5%, 3–20 pptv). To our knowledge there are no previous vertically resolved measurements of BrO and glyoxal from aircraft in the tropical free troposphere. The atmospheric implications are briefly discussed. Future studies are necessary to better understand the sources and impacts of free tropospheric halogens and oxygenated hydrocarbons on tropospheric ozone, aerosols, mercury oxidation and the oxidation capacity of the atmosphere.


2016 ◽  
Vol 16 (3) ◽  
pp. 1511-1530 ◽  
Author(s):  
V. Shah ◽  
L. Jaeglé ◽  
L. E. Gratz ◽  
J. L. Ambrose ◽  
D. A. Jaffe ◽  
...  

Abstract. We collected mercury observations as part of the Nitrogen, Oxidants, Mercury, and Aerosol Distributions, Sources, and Sinks (NOMADSS) aircraft campaign over the southeastern US between 1 June and 15 July 2013. We use the GEOS-Chem chemical transport model to interpret these observations and place new constraints on bromine radical initiated mercury oxidation chemistry in the free troposphere. We find that the model reproduces the observed mean concentration of total atmospheric mercury (THg) (observations: 1.49 ± 0.16 ng m−3, model: 1.51 ± 0.08 ng m−3), as well as the vertical profile of THg. The majority (65 %) of observations of oxidized mercury (Hg(II)) were below the instrument's detection limit (detection limit per flight: 58–228 pg m−3), consistent with model-calculated Hg(II) concentrations of 0–196 pg m−3. However, for observations above the detection limit we find that modeled Hg(II) concentrations are a factor of 3 too low (observations: 212 ± 112 pg m−3, model: 67 ± 44 pg m−3). The highest Hg(II) concentrations, 300–680 pg m−3, were observed in dry (RH  <  35 %) and clean air masses during two flights over Texas at 5–7 km altitude and off the North Carolina coast at 1–3 km. The GEOS-Chem model, back trajectories and observed chemical tracers for these air masses indicate subsidence and transport from the upper and middle troposphere of the subtropical anticyclones, where fast oxidation of elemental mercury (Hg(0)) to Hg(II) and lack of Hg(II) removal lead to efficient accumulation of Hg(II). We hypothesize that the most likely explanation for the model bias is a systematic underestimate of the Hg(0) + Br reaction rate. We find that sensitivity simulations with tripled bromine radical concentrations or a faster oxidation rate constant for Hg(0) + Br, result in 1.5–2 times higher modeled Hg(II) concentrations and improved agreement with the observations. The modeled tropospheric lifetime of Hg(0) against oxidation to Hg(II) decreases from 5 months in the base simulation to 2.8–1.2 months in our sensitivity simulations. In order to maintain the modeled global burden of THg, we need to increase the in-cloud reduction of Hg(II), thus leading to faster chemical cycling between Hg(0) and Hg(II). Observations and model results for the NOMADSS campaign suggest that the subtropical anticyclones are significant global sources of Hg(II).


2010 ◽  
Vol 10 (2) ◽  
pp. 4271-4304 ◽  
Author(s):  
I. Xueref-Remy ◽  
P. Bousquet ◽  
C. Carouge ◽  
L. Rivier ◽  
N. Viovy ◽  
...  

Abstract. Our ability to predict future climate change relies on our understanding of current and future CO2 fluxes, particularly at the scale of regions (100–1000 km). Nowadays, CO2 regional sources and sinks are still poorly known. Inverse transport modeling, a method often used to quantify these fluxes, relies on atmospheric CO2 measurements. One of the main challenge for the transport models used in the inversions is to reproduce properly CO2 vertical gradients between the boundary layer and the free troposphere, as these gradients impact on the partitioning ot the calculated fluxes between the different model regions. Vertical CO2 profiles are very well suited to assess the performances of the models. In this paper, we conduct a comparison between observed and modeled CO2 profiles recorded during two CAATER campaigns that occurred in May 2001 and October 2002 over western Europe, and that we have described in a companion paper. We test different combinations between a global transport model (LMDZt), a mesoscale transport model (CHIMERE), and different sets of biospheric fluxes, those latter all chosen to have a diurnal cycle (CASA, SiB2 and ORCHIDEE). The vertical profile comparison shows that: (1) in most cases the influence of the biospheric flux is small but sometimes not negligeable, ORCHIDEE giving the best results in the present study; (2) LMDZt is most of the time too diffusive, as it simulates a too high boundary layer height; (3) CHIMERE reproduces better the observed gradients between the boundary layer and the free troposphere, but is sometimes too variable and gives rise to incoherent structures. We conclude there is a need for more vertical profiles to conduct further studies that will help to improve the parameterization of vertical transport in the models used for CO2 flux inversions. Furthermore, we use a modeling method to quantify CO2 fluxes at the regional scale from any observing point, coupling influence functions from the transport model LMDZt (that works quite well at the synoptic scale) with information on the space-time distribution of fluxes. This modeling method is compared to a dual tracer method (the so-called Radon method) for a case study on 25 May 2001 during which simultaneous well-correlated in-situ CO2 and Radon 222 measurements have been collected. Both methods give a similar flux within the Radon 222 method uncertainty (35%), that is an atmospheric CO2 sink of −4.2 to −4.4 gC m−2 day−1. We have estimated the uncertainty of the modeling method to be at least 33% when considering averages, even much more on individual events. This method allows the determination of the area that contributed to the CO2 observed concentration. In our case, the observation point located at 1700 m a.s.l. in the North of France, is influenced by an area of 1500×700 km2 that covers the Benelux region, part of Germany and western Poland. Furthermore, this method allows deconvolution between the different contributing fluxes. In this case study, the biospheric sink contributes for 73% of the total flux, fossil fuel emissions for 27%, the oceanic flux being negligeable. However, the uncertainties of the influence function method must be better assessed. This could be possible by applying it to other cases where the calculated fluxes can be checked independantly, for example at tall towers where simultaneous CO2 and Radon 222 measurements can be conducted. The use of optimized fluxes (from atmospheric inversions) and of mesoscale models for atmospheric transport may also significantly reduce the uncertainties.


2011 ◽  
Vol 11 (12) ◽  
pp. 5673-5684 ◽  
Author(s):  
I. Xueref-Remy ◽  
P. Bousquet ◽  
C. Carouge ◽  
L. Rivier ◽  
P. Ciais

Abstract. Our ability to predict future climate change relies on our understanding of current and future CO2 fluxes, particularly on a regional scale (100–1000 km). CO2 regional sources and sinks are still poorly understood. Inverse transport modeling, a method often used to quantify these fluxes, relies on atmospheric CO2 measurements. One of the main challenges for the transport models used in the inversions is to properly reproduce CO2 vertical gradients between the boundary layer and the free troposphere, as these gradients impact on the partitioning of the calculated fluxes between the different model regions. Vertical CO2 profiles are very well suited to assess the performances of the models. In this paper, we conduct a comparison between observed and modeled CO2 profiles recorded during two CAATER campaigns that occurred in May 2001 and October 2002 over Western Europe, as described in a companion paper. We test different combinations between a global transport model (LMDZt), a mesoscale transport model (CHIMERE), and different sets of biospheric fluxes, all chosen with a diurnal cycle (CASA, SiB2 and ORCHIDEE). The vertical profile comparison shows that: 1) in most cases the influence of the biospheric flux is small but sometimes not negligible, ORCHIDEE giving the best results in the present study; 2) LMDZt is most of the time too diffuse, as it simulates a too high boundary layer height; 3) CHIMERE better reproduces the observed gradients between the boundary layer and the free troposphere, but is sometimes too variable and gives rise to incoherent structures. We conclude there is a need for more vertical profiles to conduct further studies to improve the parameterization of vertical transport in the models used for CO2 flux inversions. Furthermore, we use a modeling method to quantify CO2 fluxes at the regional scale from a chosen observing point, coupling influence functions from the transport model LMDZt (that works quite well at the synoptic scale) with information on the space-time distribution of fluxes. This modeling method is compared to a dual tracer method (the so-called Radon method) for a case study on 25 May 2001 during which simultaneous well-correlated in situ CO2 and Radon 222 measurements have been collected. Both methods give a similar result: a flux within the Radon 222 method uncertainty (35%), that is an atmospheric CO2 sink of −4.2 to −4.4 gC m−2 day−1. We have estimated the uncertainty of the modeling method to be at least 33% on average, and even more for specific individual events. This method allows the determination of the area that contributed to the CO2 observed concentration. In our case, the observation point located at 1700 m a.s.l. in the north of France, is influenced by an area of 1500×700 km2 that covers the Benelux region, part of Germany and western Poland. Furthermore, this method allows deconvolution between the different contributing fluxes. In this case study, the biospheric sink contributes 73% of the total flux, fossil fuel emissions for 27%, the oceanic flux being negligible. However, the uncertainties of the influence function method need to be better assessed. This could be possible by applying it to other cases where the calculated fluxes can be checked independently, for example at tall towers where simultaneous CO2 and Radon 222 measurements can be conducted. The use of optimized fluxes (from atmospheric inversions) and of mesoscale models for atmospheric transport may also significantly reduce the uncertainties.


2014 ◽  
Vol 14 (17) ◽  
pp. 8917-8931 ◽  
Author(s):  
H. Bozem ◽  
H. Fischer ◽  
C. Gurk ◽  
C. L. Schiller ◽  
U. Parchatka ◽  
...  

Abstract. Convective redistribution of ozone and its precursors between the boundary layer (BL) and the free troposphere (FT) influences photochemistry, in particular in the middle and upper troposphere (UT). We present a case study of convective transport during the GABRIEL campaign over the tropical rain forest in Suriname in October 2005. During one measurement flight the inflow and outflow regions of a cumulonimbus cloud (Cb) have been characterized. We identified a distinct layer between 9 and 11 km altitude with enhanced mixing ratios of CO, O3, HOx, acetone and acetonitrile. The elevated O3 contradicts the expectation that convective transport brings low-ozone air from the boundary layer to the outflow region. Entrainment of ozone-rich air is estimated to account for 62% (range: 33–91%) of the observed O3. Ozone is enhanced by only 5–6% by photochemical production in the outflow due to enhanced NO from lightning, based on model calculations using observations including the first reported HOx measurements over the tropical rainforest. The "excess" ozone in the outflow is most probably due to direct production by corona discharge associated with lightning. We deduce a production rate of 5.12 × 1028 molecules O3 flash−1 (range: 9.89 × 1026–9.82 × 1028 molecules O3 flash−1), which is at the upper limit of the range reported previously.


2013 ◽  
Vol 13 (8) ◽  
pp. 21541-21572
Author(s):  
F. Wang ◽  
A. Saiz-Lopez ◽  
A. S. Mahajan ◽  
J. C. Gómez Martín ◽  
D. Armstrong ◽  
...  

Abstract. Mercury is a contaminant of global concern. It is transported in the atmosphere primarily as gaseous elemental mercury, but its reactivity and deposition to the surface environment, through which it enters the aquatic food chain, is greatly enhanced following oxidation. Measurements of oxidised mercury in the polar to sub-tropical marine boundary layer have suggested that photolytically produced bromine atoms are the primary oxidant of mercury. We report year-round measurements of elemental and oxidised mercury, along with ozone, halogen oxides (IO and BrO) and nitrogen oxides (NO2), in the marine boundary layer over the Galápagos Islands in the Equatorial Pacific. Elemental mercury concentration remained low throughout the year, while considerable concentrations of oxidised mercury occurred around midday. Our results show that the production of oxidised mercury in the tropical marine boundary layer cannot be accounted for by only bromine oxidation, or by the inclusion of ozone and hydroxyl. A two-step oxidation mechanism where the HgBr intermediate is further oxidised to Hg(II) depends critically on the stability of HgBr. If the current paradigm is considered, another oxidant is needed to explain more than 50% of the observed oxidised mercury. We show that atomic iodine could play the role of the missing oxidant, explaining not only the Hg(II) levels observed, but also the daily variability. However, more recent theoretical calculations indicate that the thermal dissociation rate of HgBr is much faster, by an order of magnitude, than previously reported, which implies that only trace gases at relatively high mixing ratios forming stable complexes with HgBr (such as HO2 and NO2) could compete to generate levels of Hg(II) similar to those observed in our study. Nevertheless, the daily variability of oxidised mercury is not well accounted for by using these new theoretically estimated rates. Furthermore, correlation analysis does not support a major role of NO2 or HO2. We conclude that the key pathway that significantly enhances atmospheric mercury oxidation and deposition to the tropical oceans is missing from the current understanding of atmospheric mercury oxidation.


2014 ◽  
Vol 14 (4) ◽  
pp. 5233-5270 ◽  
Author(s):  
H. Bozem ◽  
H. Fischer ◽  
C. Gurk ◽  
C. L. Schiller ◽  
U. Parchatka ◽  
...  

Abstract. Convective redistribution of ozone and its precursors between the boundary layer (BL) and the free troposphere (FT) influences photochemistry, in particular that of the middle and upper troposphere (UT). We present a case study of convective transport during the GABRIEL campaign over the tropical rain forest in Suriname in October 2005. During a measurement flight on 12 October the inflow and outflow regions of a cumulonimbus cloud (Cb) have been characterized, providing evidence of convective transport. We identified a distinct layer between 9 and 11 km altitude with enhanced mixing ratios of CO, O3, HOx, acetone and acetonitrile. The elevated O3 contradicts the expectation that convective transport brings low ozone air from the boundary layer to the outflow region. The enhanced mixing ratio of ozone in the outflow was mainly of dynamical origin. Entrainment of ozone rich air at the outflow level into the convective outflow accounts for 62% (range: 33–91%) of the observed O3. Ozone is enhanced by only 5–6% by photochemical production in the outflow due to enhanced NO from lightning, based on steady state model calculations, using in-situ observations including the first reported HOx measurements over the tropical rainforest. The "excess" ozone in the outflow is most probably due to direct production by corona discharge associated with lightning. We deduce a production rate of 5.12 × 1028 molecules O3 flash−1 (range: 9.89 × 1026–9.82 × 1028 molecules O3 flash−1), which is at the upper limit of the range of the values reported previously.


2019 ◽  
Author(s):  
Olivia E. Salmon ◽  
Lisa R. Welp ◽  
Michael Baldwin ◽  
Kristian Hajny ◽  
Brian H. Stirm ◽  
...  

Abstract. We use H2Ov isotopic vertical profile measurements and complementary meteorological observations to examine how boundary layer, cloud, and mixing processes influence the vertical structure of deuterium-excess (d-excess = δD – 8 × δ18O) in the boundary layer, inversion layer, and lower free troposphere. Airborne measurements of water vapor (H2Ov) stable isotopologues were conducted around two continental U.S. cities in February–March 2016. Nine research flights were designed to characterize the δD, δ18O, and d-excess vertical profiles extending from the surface to ≤ 2 km. We examine observations from three unique case study flights in detail. One case study shows H2Ov isotopologue vertical profiles that are consistent with Rayleigh isotopic distillation theory coinciding with clear skies, dry adiabatic lapse rates within the boundary layer, and relatively constant vertical profiles of wind speed and wind direction. The two remaining case studies show that H2Ov isotopic signatures above the boundary layer are sensitive to cloud processes and complex air mass mixing patterns. These two case studies indicate anomalies in the d-excess signature relative to Rayleigh theory, such as low d-excess values at the interface of the inversion layer and the free troposphere, which is possibly indicative of cloud evaporation. We discuss possible explanations for the observed d-excess anomalies, such as cloud evaporation, wind shear, and vertical mixing. In situ H2Ov stable isotope measurements, and d-excess in particular, could be useful for improving our understanding of moisture processing and transport mixing occurring between the boundary layer, inversion layer, and free troposphere.


2003 ◽  
Vol 3 (3) ◽  
pp. 2393-2426 ◽  
Author(s):  
F. Dulac ◽  
P. Chazette

Abstract. We present a case study of tropospheric aerosol transport in the eastern Mediterranean, based on airborne measurements obtained south of Greece on 7 June 1997. Airborne observations (backscattering lidar at 0.532 mm with polarization measurements, in situ particle counters/sizers, and standard meteorological measurements) are complemented by monitoring with Meteosat visible and infrared images and a ground-based sun-photometer, air-mass back-trajectory computations, and meteorological analyses. The vertical structure of the lower troposphere appears complex with horizontal variability and a superposition of several turbid layers from the surface up to the clean free troposphere which is found above 2 to 4 km in altitude. We identify the presence of depolarising dust from northern Africa in the most elevated turbid layer, which is relatively humid and has clouds embedded. The lowermost troposphere likely contains pollution water-soluble aerosols from eastern continental Greece, and an intermediate layer is found with a probable mixture of the two types of particles. The column optical depth at 0.55 mm estimated from Meteosat is in the range 0.15–0.35. It is used to constrain the aerosol backscattering-to-extinction ratio needed for the backscattering lidar data inversion. The column value of 0.017 sr−1 is found applicable to the various aerosol layers and allows us to derive the aerosol extinction vertical profile. The aerosol extinction coefficient ranges from 0.03 km−1 in the lower clean free troposphere to more than 0.25 km−1 in the marine boundary layer. Values are <0.1 km−1 in the elevated dust layer but its thickness makes it dominate the aerosol optical depth at some places.


Sign in / Sign up

Export Citation Format

Share Document