scholarly journals Enhanced production of oxidised mercury over the tropical Pacific Ocean: a key missing oxidation pathway

2013 ◽  
Vol 13 (8) ◽  
pp. 21541-21572
Author(s):  
F. Wang ◽  
A. Saiz-Lopez ◽  
A. S. Mahajan ◽  
J. C. Gómez Martín ◽  
D. Armstrong ◽  
...  

Abstract. Mercury is a contaminant of global concern. It is transported in the atmosphere primarily as gaseous elemental mercury, but its reactivity and deposition to the surface environment, through which it enters the aquatic food chain, is greatly enhanced following oxidation. Measurements of oxidised mercury in the polar to sub-tropical marine boundary layer have suggested that photolytically produced bromine atoms are the primary oxidant of mercury. We report year-round measurements of elemental and oxidised mercury, along with ozone, halogen oxides (IO and BrO) and nitrogen oxides (NO2), in the marine boundary layer over the Galápagos Islands in the Equatorial Pacific. Elemental mercury concentration remained low throughout the year, while considerable concentrations of oxidised mercury occurred around midday. Our results show that the production of oxidised mercury in the tropical marine boundary layer cannot be accounted for by only bromine oxidation, or by the inclusion of ozone and hydroxyl. A two-step oxidation mechanism where the HgBr intermediate is further oxidised to Hg(II) depends critically on the stability of HgBr. If the current paradigm is considered, another oxidant is needed to explain more than 50% of the observed oxidised mercury. We show that atomic iodine could play the role of the missing oxidant, explaining not only the Hg(II) levels observed, but also the daily variability. However, more recent theoretical calculations indicate that the thermal dissociation rate of HgBr is much faster, by an order of magnitude, than previously reported, which implies that only trace gases at relatively high mixing ratios forming stable complexes with HgBr (such as HO2 and NO2) could compete to generate levels of Hg(II) similar to those observed in our study. Nevertheless, the daily variability of oxidised mercury is not well accounted for by using these new theoretically estimated rates. Furthermore, correlation analysis does not support a major role of NO2 or HO2. We conclude that the key pathway that significantly enhances atmospheric mercury oxidation and deposition to the tropical oceans is missing from the current understanding of atmospheric mercury oxidation.

2014 ◽  
Vol 14 (3) ◽  
pp. 1323-1335 ◽  
Author(s):  
F. Wang ◽  
A. Saiz-Lopez ◽  
A. S. Mahajan ◽  
J. C. Gómez Martín ◽  
D. Armstrong ◽  
...  

Abstract. Mercury is a contaminant of global concern. It is transported in the atmosphere primarily as gaseous elemental mercury, but its reactivity and deposition to the surface environment, through which it enters the aquatic food chain, is greatly enhanced following oxidation. Measurements and modelling studies of oxidised mercury in the polar to sub-tropical marine boundary layer (MBL) have suggested that photolytically produced bromine atoms are the primary oxidant of mercury. We report year-round measurements of elemental and oxidised mercury, along with ozone, halogen oxides (IO and BrO) and nitrogen oxides (NO2), in the MBL over the Galápagos Islands in the equatorial Pacific. Elemental mercury concentration remained low throughout the year, while higher than expected levels of oxidised mercury occurred around midday. Our results show that the production of oxidised mercury in the tropical MBL cannot be accounted for by bromine oxidation only, or by the inclusion of ozone and hydroxyl. As a two-step oxidation mechanism, where the HgBr intermediate is further oxidised to Hg(II), depends critically on the stability of HgBr, an additional oxidant is needed to react with HgBr to explain more than 50% of the observed oxidised mercury. Based on best available thermodynamic data, we show that atomic iodine, NO2, or HO2 could all play the potential role of the missing oxidant, though their relative importance cannot be determined explicitly at this time due to the uncertainties associated with mercury oxidation kinetics. We conclude that the key pathway that significantly enhances atmospheric mercury oxidation and deposition to the tropical oceans is missing from the current understanding of atmospheric mercury oxidation.


2010 ◽  
Vol 10 (3) ◽  
pp. 1121-1131 ◽  
Author(s):  
E.-G. Brunke ◽  
C. Labuschagne ◽  
R. Ebinghaus ◽  
H. H. Kock ◽  
F. Slemr

Abstract. Gaseous mercury in the marine boundary layer has been measured with a 15 min temporal resolution at the Global Atmosphere Watch station Cape Point since March 2007. The most prominent features of the data until July 2008 are the frequent occurrences of pollution (PEs) and depletion events (DEs). Both types of events originate mostly within a short transport distance (up to about 100 km), which are embedded in air masses ranging from marine background to continental. The Hg/CO emission ratios observed during the PEs are within the range reported for biomass burning and industrial/urban emissions. The depletion of gaseous mercury during the DEs is in many cases almost complete and suggests an atmospheric residence time of elemental mercury as short as a few dozens of hours, which is in contrast to the commonly used estimate of approximately 1 year. The DEs observed at Cape Point are not accompanied by simultaneous depletion of ozone which distinguishes them from the halogen driven atmospheric mercury depletion events (AMDEs) observed in Polar Regions. Nonetheless, DEs similar to those observed at Cape Point have also been observed at other places in the marine boundary layer. Additional measurements of mercury speciation and of possible mercury oxidants are hence called for to reveal the chemical mechanism of the newly observed DEs and to assess its importance on larger scales.


2016 ◽  
Vol 16 (21) ◽  
pp. 13807-13821 ◽  
Author(s):  
Qianqian Hong ◽  
Zhouqing Xie ◽  
Cheng Liu ◽  
Feiyue Wang ◽  
Pinhua Xie ◽  
...  

Abstract. Long-term continuous measurements of speciated atmospheric mercury were conducted from July 2013 to June 2014 in Hefei, a midlatitude inland city in eastern central China that experiences frequent haze pollution. The mean concentrations (±standard deviation) of gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM) and particle-bound mercury (PBM) were 3.95 ± 1.93 ng m−3, 2.49 ± 2.41 and 23.3 ± 90.8 pg m−3, respectively, on non-haze days, and 4.74 ± 1.62 ng m−3, 4.32 ± 8.36 and 60.2 ± 131.4 pg m−3, respectively, on haze days. Potential source contribution function (PSCF) analysis suggested that atmospheric mercury pollution on haze days was caused primarily by local emissions, instead of via long-range transport. The poorer mixing conditions on haze days also favored the accumulation of atmospheric mercury. Compared to GEM and GOM, PBM was especially sensitive to haze pollution. The mean PBM concentration on haze days was 2.5 times that on non-haze days due to elevated concentrations of particulate matter. PBM also showed a clear seasonal trend; its concentration was the highest in fall and winter, decreased rapidly in spring and was the lowest in summer, following the same order in the frequency of haze days in different seasons. On both non-haze and haze days, GOM concentrations remained low at night, but increased rapidly just before sunrise, which could be due to diurnal variation in air exchange between the boundary layer and free troposphere. However, non-haze and haze days showed different trends in daytime GEM and GOM concentrations. On non-haze days, GEM and GOM declined synchronously through the afternoon, probably due to the retreat of the free tropospheric air as the height of the atmospheric boundary layer increases. In contrast, on haze days, GOM and GEM showed opposite trends with the highest GOM and lowest GEM observed in the afternoon, suggesting the occurrence of photochemical oxidation. This is supported by simple box-model calculations, which showed that oxidation of GEM to GOM does occur and that the transport of free tropospheric GOM alone is not large enough to account for the observed increase in daytime GOM. Our results further postulate that NO2 aggregation with the HgOH intermediate may be a potential mechanism for the enhanced production of GOM during daytime.


2016 ◽  
Author(s):  
Qianqian Hong ◽  
Zhouqing Xie ◽  
Cheng Liu ◽  
Feiyue Wang ◽  
Pinhua Xie ◽  
...  

Abstract. Long-term continuous measurements of speciated atmospheric mercury were conducted at Hefei, a mid-latitude inland city in east central China, from July 2013 to June 2014. The mean concentrations (± standard deviation) of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particle-bound mercury (PBM) were 3.95 ± 1.93 ng m−3, 2.49 ± 2.41 pg m−3 and 23.3 ± 90.8 pg m−3, respectively, during non-haze days, and 4.74 ± 1.62 ng m−3, 4.32 ± 8.36 pg m−3 and 60.2 ± 131.4 pg m−3, respectively, during haze days. Potential source contribution function (PSCF) analysis suggested that the atmospheric mercury pollution during haze days was caused primarily by local mercury emissions, instead of via long-range mercury transport. In addition, the disadvantageous diffussion during haze days will also enhance the level of atmospheric mercury. Compared to the GEM and RGM, change in PBM was more sensitive to the haze pollution. The mean PBM concentration during haze days was 2.5 times that during non-haze days due to elevated concentrations of particulate matter. A remarkable seasonal trend in PBM was observed with concentration decreasing in the following order in response to the frequency of haze days: autumn, winter, spring, summer. A distinct diurnal relationship was found between GEM and RGM during haze days, with the peak values of RGM coinciding with the decline in GEM. Using HgOH as an intermediate product during GEM oxidation, our results suggest that NO2 aggregation with HgOH could explain the enhanced production of RGM during the daytime in haze days. Increasing level of NOx will potentially accelerate the oxidation of GEM despite the decrease of solar radiation.


2010 ◽  
Vol 7 (6) ◽  
pp. 537 ◽  
Author(s):  
Anne L. Soerensen ◽  
Henrik Skov ◽  
Matthew S. Johnson ◽  
Marianne Glasius

Environmental context Mercury is a neurotoxin that bioaccumulates in the aquatic food web. Atmospheric emissions from urban areas close to the coast could cause increased local mercury deposition to the ocean. Our study adds important new data to the current limited knowledge on atmospheric mercury emissions and dynamics in coastal urban areas. Abstract Approximately 50% of primary atmospheric mercury emissions are anthropogenic, resulting from e.g. emission hotspots in urban areas. Emissions from urban areas close to the coast are of interest because they could increase deposition loads to nearby coastal waters as well as contribute to long range transport of mercury. We present results from measurements of gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) in 15 coastal cities and their surrounding marine boundary layer (MBL). An increase of 15–90% in GEM concentration in coastal urban areas was observed compared with the remote MBL. Strong RGM enhancements were only found in two cities. In urban areas with statistically significant GEM/CO enhancement ratios, slopes between 0.0020 and 0.0087 ng m–3 ppb–1 were observed, which is consistent with other observations of anthropogenic enhancement. The emission ratios were used to estimate GEM emissions from the areas. A closer examination of data from Sydney (Australia), the coast of Chile, and Valparaiso region (Chile) in the southern hemisphere, is presented.


2005 ◽  
Vol 5 (3) ◽  
pp. 3491-3532 ◽  
Author(s):  
M. Bitter ◽  
S. M. Ball ◽  
I. M. Povey ◽  
R. L. Jones

Abstract. This paper describes a broadband cavity ringdown spectrometer and its deployment during the 2002 North Atlantic Marine Boundary Layer Experiment (NAMBLEX) to measure ambient concentrations of NO3, N2O5, I2 and OIO at the Mace Head Atmospheric Research Station, Co. Galway, Ireland. The effective absorption path lengths accessible with the spectrometer generally exceeded 10 km, enabling sensitive localised ''point'' measurements of atmospheric absorbers to be made adjacent to the other instruments monitoring chemically related species at the same site. For the majority of observations, the spectrometer was used in an open path configuration thereby avoiding surface losses of reactive species. A subset of observations targeted the N2O5 molecule by detecting the additional NO3 formed by the thermal dissociation of N2O5. In all cases the concentrations of the atmospheric absorbers were retrieved by fitting the differential structure in the broadband cavity ringdown spectra using a methodology adapted from long path differential optical absorption spectroscopy. The uncertainty of the retrieval depends crucially on the correct treatment and fitting of the absorption bands due to water vapour, a topic that is discussed in the context of analysing broadband cavity ringdown spectra. The quality of the measurements and the retrieval method are illustrated with representative spectra acquired during NAMBLEX in spectral regions around 660 nm (NO3 and N2O5) and 570 nm (I2 and OIO). Typical detection limits were 1 pptv for NO3 in an integration time of 100 s, 4 pptv for OIO and 20 pptv for I2 in an integration time of 10 min. Additionally, the concentrations of atmospheric water vapour and the aerosol optical extinction were retrieved in both spectral regions. A companion paper in this issue presents the time series of the measurements and discusses their significance for understanding the variability of short lived nitrogen and iodine compounds in the marine boundary layer.


Fuel ◽  
2019 ◽  
Vol 252 ◽  
pp. 10-18 ◽  
Author(s):  
Shu Yang ◽  
Kang Liu ◽  
Min Liu ◽  
Xu Yan ◽  
Cao Liu ◽  
...  

2016 ◽  
Author(s):  
Z. Ye ◽  
H. Mao ◽  
C.-J. Lin ◽  
S. Y. Kim

Abstract. A box model incorporating a state-of-the-art chemical mechanism for atmospheric mercury (Hg) cycling was developed to investigate oxidation of gaseous elemental mercury (GEM) at three locations in the northeastern United States: Appledore Island (marine), Thompson Farm (coastal, rural), and Pack Monadnock (inland, rural, elevated). The chemical mechanism improved model's ability to simulate the formation of gaseous oxidized mercury (GOM) at the study sites. At the coastal and inland sites, GEM oxidation was predominated by O3 and OH, contributing 80–99 % of total GOM production during daytime. H2O2 initiated GEM oxidation was significant (~ 33 % of the total GOM) at the inland site during nighttime. In the marine boundary layer (MBL), Br and BrO were dominant GEM oxidants contributing ~ 70 % of the total GOM production during mid-day, while O3 dominated GEM oxidation (50–90 % of GOM production) over the remaining day. Following the production of HgBr from GEM + Br, HgBr was oxidized by BrO, HO2, OH, ClO, and IO to form Hg(II) brominated GOM species. However, under atmospheric conditions, the prevalent GEM oxidants in the MBL could be Br / BrO or O3 / OH depending on Br and BrO mixing ratios. Relative humidity and products of the CH3O2 + BrO reaction possibly affected significantly the mixing ratios of Br or BrO radicals and subsequently GOM formation. Gas-particle partitioning could be potentially important in the production of GOM as well as Br and BrO at the marine site.


Sign in / Sign up

Export Citation Format

Share Document