scholarly journals The role of dew as a night-time reservoir and morning source for atmospheric ammonia

2016 ◽  
Vol 16 (11) ◽  
pp. 7435-7449 ◽  
Author(s):  
Gregory R. Wentworth ◽  
Jennifer G. Murphy ◽  
Katherine B. Benedict ◽  
Evelyn J. Bangs ◽  
Jeffrey L. Collett Jr.

Abstract. Several field studies have proposed that the volatilization of NH3 from evaporating dew is responsible for an early morning pulse of ammonia frequently observed in the atmospheric boundary layer. Laboratory studies conducted on synthetic dew showed that the fraction of ammonium (NH4+) released as gas-phase ammonia (NH3) during evaporation is dependent on the relative abundances of anions and cations in the dew. Hence, the fraction of NH3 released during dew evaporation (Frac(NH3)) can be predicted given dew composition and pH. Twelve separate ambient dew samples were collected at a remote high-elevation grassland site in Colorado from 28 May to 11 August 2015. Average [NH4+] and pH were 26 µM and 5.2 respectively and were on the lower end of dew [NH4+] and pH observations reported in the literature. Ambient dew mass (in g m−2) was monitored with a dewmeter, which continuously measured the mass of a tray containing artificial turf representative of the grass canopy to track the accumulation and evaporation of dew. Simultaneous measurements of ambient NH3 indicated that a morning increase in NH3 was coincident in time with dew evaporation and that either a plateau or decrease in NH3 occurred once the dew had completely evaporated. This morning increase in NH3 was never observed on mornings without surface wetness (neither dew nor rain, representing one-quarter of mornings during the study period). Dew composition was used to determine an average Frac(NH3) of 0.94, suggesting that nearly all NH4+ is released back to the boundary layer as NH3 during evaporation at this site. An average NH3 emission of 6.2 ng m−2 s−1 during dew evaporation was calculated using total dew volume (Vdew) and evaporation time (tevap) and represents a significant morning flux in a non-fertilized grassland. Assuming a boundary layer height of 150 m, the average mole ratio of NH4+ in dew to NH3 in the boundary layer at sunrise is roughly 1.6 ± 0.7. Furthermore, the observed loss of NH3 during nights with dew is approximately equal to the observed amount of NH4+ sequestered in dew at the onset of evaporation. Hence, there is strong evidence that dew is both a significant night-time reservoir and strong morning source of NH3. The possibility of rain evaporation as a source of NH3, as well as dew evaporation influencing species of similar water solubility (acetic acid, formic acid, and HONO), is also discussed. If release of NH3 from dew and rain evaporation is pervasive in many environments, then estimates of NH3 dry deposition and NHx ( ≡  NH3 + NH4+) wet deposition may be overestimated by models that assume that all NHx deposited in rain and dew remains at the surface.

2016 ◽  
Author(s):  
Gregory R. Wentworth ◽  
Jennifer G. Murphy ◽  
Katherine B. Benedict ◽  
Evelyn J. Bangs ◽  
Jeffrey L. Collett Jr.

Abstract. Several field studies have proposed that the volatilization of NH3 from evaporating dew is responsible for an early morning pulse of ammonia frequently observed in the atmospheric boundary layer. Laboratory studies conducted on synthetic dew showed that the fraction of ammonium (NH4+) released as gas-phase ammonia (NH3) during evaporation is dependent on the relative abundances of anions and cations in the dew. Hence, the fraction of NH3 released during dew evaporation (Frac(NH3)) can be predicted given dew composition and pH. Twelve separate ambient dew samples were collected at a remote high elevation grassland site in Colorado from 28 May to 11 August, 2015. Average [NH4+] and pH were 26 μM and 5.2, respectively, and were on the lower end of dew [NH4+] and pH observations reported in the literature. Ambient dew mass (in g m−2) was monitored with a dewmeter, which continuously measured the mass of a tray containing artificial turf representative of the grass canopy to track the accumulation and evaporation of dew. Simultaneous measurements of ambient NH3 indicated that a morning increase in NH3 was coincident in time with dew evaporation, and that either a plateau or decrease in NH3 occurred once the dew had completely evaporated. This morning increase in NH3 was never observed on mornings without surface wetness (neither dew nor rain, representing one-quarter of mornings during the study period). Dew composition was used to determine an average Frac(NH3) of 0.94, suggesting that nearly all NH4+ is released back to the boundary layer as NH3 during evaporation at this site. An average NH3 emission of 6.2 ng m−2 s−1 during dew evaporation was calculated using total dew volume (Vdew) and evaporation time (tevap), and represents a significant morning flux in a non-fertilized grassland. Assuming a boundary layer height of 150 m, the average mole ratio of NH4+ in dew to NH3 in the boundary layer at sunrise is roughly 1.6 ± 0.7. Furthermore, the observed loss of NH3 during nights with dew is approximately equal to the observed amount of NH4+ sequestered in dew at the onset of evaporation. Hence, there is strong evidence that dew is both a significant night-time reservoir and strong morning source of NH3. The possibility of rain evaporation as a source of NH3, as well as dew evaporation influencing species of similar water solubility (acetic acid, formic acid, and HONO) is also discussed. If release of NH3 from dew and rain evaporation is pervasive in many environments, then estimates of NH3 dry deposition and NHx (≡NH3 + NH4+) wet deposition may be overestimated by models that assume that all NHx deposited in rain and dew remains at the surface.


2009 ◽  
Vol 137 (1) ◽  
pp. 414-432 ◽  
Author(s):  
F. Couvreux ◽  
F. Guichard ◽  
P. H. Austin ◽  
F. Chen

Abstract Mesoscale water vapor heterogeneities in the boundary layer are studied within the context of the International H2O Project (IHOP_2002). A significant portion of the water vapor variability in the IHOP_2002 occurs at the mesoscale, with the spatial pattern and the magnitude of the variability changing from day to day. On 14 June 2002, an atypical mesoscale gradient is observed, which is the reverse of the climatological gradient over this area. The factors causing this water vapor variability are investigated using complementary platforms (e.g., aircraft, satellite, and in situ) and models. The impact of surface flux heterogeneities and atmospheric variability are evaluated separately using a 1D boundary layer model, which uses surface fluxes from the High-Resolution Land Data Assimilation System (HRLDAS) and early-morning atmospheric temperature and moisture profiles from a mesoscale model. This methodology, based on the use of robust modeling components, allows the authors to tackle the question of the nature of the observed mesoscale variability. The impact of horizontal advection is inferred from a careful analysis of available observations. By isolating the individual contributions to mesoscale water vapor variability, it is shown that the observed moisture variability cannot be explained by a single process, but rather involves a combination of different factors: the boundary layer height, which is strongly controlled by the surface buoyancy flux, the surface latent heat flux, the early-morning heterogeneity of the atmosphere, horizontal advection, and the radiative impact of clouds.


2020 ◽  
Vol 237 ◽  
pp. 08027
Author(s):  
Kaihui Zhao ◽  
Yonghua Wu ◽  
Jianping Huang ◽  
Rongsheng Jiang ◽  
Guillaume Gronoff ◽  
...  

High ozone (O3) episodes frequently occur in New York metropolitan and the downwind coastal area in summer. In this study, lidar/ceilometer are combined with WRF/Chem model to investigate an O3 event on Aug. 27~30 2018. We examine the spatial-temporal variabilities of O3 and planetary-boundary-layer height (PBLH) and assess the model performance on simulating surface O3 during this episode. By comparing with the lidar observations, the WRF/Chem is able to capture high O3 distribution in the PBL at noon and indicates consistent diurnal evolution for the ground O3. Nevertheless, in the early morning and night, the model overestimates the ground O3 and underestimates the PBLH.


2021 ◽  
Author(s):  
Anna Franck ◽  
Dmitri Moisseev ◽  
Ville Vakkari ◽  
Matti Leskinen ◽  
Janne Lampilahti ◽  
...  

Abstract. Knowledge of atmospheric boundary layer state and evolution is important for understanding air pollution and low level cloud development, among other things. There are a number of instruments and methods that are currently used to estimate boundary layer height (BLH). However, no single instrument is capable of providing BLH measurements in all weather conditions. We proposed a method to derive a daytime convective BLH using radar observations and investigated the consistency of these retrievals between different radars. We utilized data from three vertically-pointing radars that are available at the measurement station in Southern Finland: the C-band (5 GHz), Ka-band (35 GHz) and W-band (94 GHz). The Ka- or W- band cloud radars are an integral part of cloud profiling stations of pan-European Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS). Our method will be utilized at ACTRIS stations to serve as an additional estimate of the BLH during summer months. During this period, echoes from insects and Bragg scatter are often recorded by radars. To retrieve a BLH, we suggested a mechanism to separate small insects that follow air motion and independently flying insects that works for all analyzed frequency bands. At the lower frequency (the C-band) insect scattering was separated from Bragg scattering using a combination of radar reflectivity factor and linear depolarization ratio. Retrieved values of the BLH from all radars are in a good agreement when compared to the BLH obtained with the co-located lidar and reanalysis dataset. Our method showed some underestimation of the BLH after night-time heavy precipitation yet demonstrated a potential to serve as a reliable method to obtain a BLH during clear-sky days. Additionally, the entrainment zone was observed by the C-band radar above the CBL in a form of a Bragg scatter layer. Aircraft observations of vertical profiles of potential temperature and water vapor mixing ratio, collected in the vicinity of the radar, demonstrated some agreement with the Bragg scatter layer.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 610
Author(s):  
Yu Shi ◽  
Lei Liu ◽  
Fei Hu ◽  
Guangqiang Fan ◽  
Juntao Huo

To investigate the evolution of the nocturnal boundary layer (NBL) and its impacts on the vertical distributions of pollutant particulates, a combination of in situ observations from a large tethered balloon, remote sensing instruments (aerosol lidar and Doppler wind lidar) and an atmospheric environment-monitoring vehicle were utilized. The observation site was approximately 100 km southwest of Beijing, the capital of China. Results show that a considerable proportion of pollutant particulates were still suspended in the residual layer (RL) (e.g., the nitrate concentration reached 30 μg m−3) after sunset. The NBL height calculated by the aerosol lidar was closer to the top of the RL before midnight because of the pollutants stored aloft in the RL and the shallow surface inversion layer; after midnight, the NBL height was more consistent with the top of the surface inversion layer. As the convective mixing layer gradually became established after sunrise the following day, the pollutants stored in the nocturnal RL of the preceding night were entrained downward into the mixing layer. The early morning PM2.5 concentration near 700 m in the RL on 20 December decreased by 83% compared with the concentration at 13:34 on 20 December at the same height. The nitrate concentration also decreased significantly in the RL, and the mixing down of nitrate from the RL could contribute about 37% to the nitrate in the mixing layer. Turbulence activities still existed in the RL with the bulk Richardson number (Rb) below the threshold value. The corresponding increase in PM2.5 was likely to be correlated with the weak turbulence in the RL in the early morning.


2017 ◽  
Author(s):  
Ting Yang ◽  
Zifa Wang ◽  
Wei Zhang ◽  
Alex Gbaguidi ◽  
Nubuo Sugimoto ◽  
...  

Abstract. Predicting air pollution events in low atmosphere over megacities requires thorough understanding of the tropospheric dynamic and chemical processes, involving notably, continuous and accurate determination of the boundary layer height (BLH). Through intensive observations experimented over Beijing (China), and an exhaustive evaluation existing algorithms applied to the BLH determination, persistent critical limitations are noticed, in particular over polluted episodes. Basically, under weak thermal convection with high aerosol loading, none of the retrieval algorithms is able to fully capture the diurnal cycle of the BLH due to pollutant insufficient vertical mixing in the boundary layer associated with the impact of gravity waves on the tropospheric structure. Subsequently, a new approach based on gravity wave theory (the cubic root gradient method: CRGM), is developed to overcome such weakness and accurately reproduce the fluctuations of the BLH under various atmospheric pollution conditions. Comprehensive evaluation of CRGM highlights its high performance in determining BLH from Lidar. In comparison with the existing retrieval algorithms, the CRGM potentially reduces related computational uncertainties and errors from BLH determination (strong increase of correlation coefficient from 0.44 to 0.91 and significant decrease of the root mean square error from 643 m to 142 m). Such newly developed technique is undoubtedly expected to contribute to improve the accuracy of air quality modelling and forecasting systems.


Sign in / Sign up

Export Citation Format

Share Document