scholarly journals Retrieval of aerosol optical depth from surface solar radiation measurements using machine learning algorithms, non-linear regression and a radiative transfer-based look-up table

2016 ◽  
Vol 16 (13) ◽  
pp. 8181-8191 ◽  
Author(s):  
Jani Huttunen ◽  
Harri Kokkola ◽  
Tero Mielonen ◽  
Mika Esa Juhani Mononen ◽  
Antti Lipponen ◽  
...  

Abstract. In order to have a good estimate of the current forcing by anthropogenic aerosols, knowledge on past aerosol levels is needed. Aerosol optical depth (AOD) is a good measure for aerosol loading. However, dedicated measurements of AOD are only available from the 1990s onward. One option to lengthen the AOD time series beyond the 1990s is to retrieve AOD from surface solar radiation (SSR) measurements taken with pyranometers. In this work, we have evaluated several inversion methods designed for this task. We compared a look-up table method based on radiative transfer modelling, a non-linear regression method and four machine learning methods (Gaussian process, neural network, random forest and support vector machine) with AOD observations carried out with a sun photometer at an Aerosol Robotic Network (AERONET) site in Thessaloniki, Greece. Our results show that most of the machine learning methods produce AOD estimates comparable to the look-up table and non-linear regression methods. All of the applied methods produced AOD values that corresponded well to the AERONET observations with the lowest correlation coefficient value being 0.87 for the random forest method. While many of the methods tended to slightly overestimate low AODs and underestimate high AODs, neural network and support vector machine showed overall better correspondence for the whole AOD range. The differences in producing both ends of the AOD range seem to be caused by differences in the aerosol composition. High AODs were in most cases those with high water vapour content which might affect the aerosol single scattering albedo (SSA) through uptake of water into aerosols. Our study indicates that machine learning methods benefit from the fact that they do not constrain the aerosol SSA in the retrieval, whereas the LUT method assumes a constant value for it. This would also mean that machine learning methods could have potential in reproducing AOD from SSR even though SSA would have changed during the observation period.

2016 ◽  
Author(s):  
J. Huttunen ◽  
H. Kokkola ◽  
T. Mielonen ◽  
M. Mononen ◽  
A. Lipponen ◽  
...  

Abstract. In order to have a good estimate of the current forcing by anthropogenic aerosols knowledge on past aerosol levels is needed. Aerosol optical depth (AOD) is a good measure for aerosol loading. However, dedicated measurements of AOD are only available from 1990’s onward. One option to lengthen the AOD time series beyond 1990’s is to retrieve AOD from surface solar radiation (SSR) measurements done with pyranometers. In this work, we have evaluated several inversion methods designed for this task. We compared a look-up table method based on radiative transfer modelling, a nonlinear regression method and four machine learning methods (Gaussian Process, Neural Network, Random Forest and Support Vector Machine) with AOD observations done with a sun photometer at an Aerosol Robotic Network (AERONET) site in Thessaloniki, Greece. Our results show that most of the machine learning methods produce AOD estimates comparable to the look-up table and nonlinear regression methods. All of the applied methods produced AOD values that corresponded well to the AERONET observations with the lowest correlation coefficient value being 0.87 for the Random Forest method. While many of the methods tended to slightly overestimate low AODs and underestimate high AODs, Neural network and support vector machine showed overall better correspondence for the whole AOD range. The differences in producing both ends of the AOD range seem to be caused by differences in the aerosol composition. High AODs were in most cases those with high water vapour content which might affect the aerosol single scattering albedo (SSA) through uptake of water into aerosols. Our study indicates that machine learning methods benefit from the fact that they do not constrain the aerosol SSA in the retrieval where as the LUT method assumes a constant value for it. This would also mean that machine learning methods could have potential in reproducing AOD from SSR even though SSA would have changed during the observation period.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 771
Author(s):  
Toshiya Arakawa

Mammalian behavior is typically monitored by observation. However, direct observation requires a substantial amount of effort and time, if the number of mammals to be observed is sufficiently large or if the observation is conducted for a prolonged period. In this study, machine learning methods as hidden Markov models (HMMs), random forests, support vector machines (SVMs), and neural networks, were applied to detect and estimate whether a goat is in estrus based on the goat’s behavior; thus, the adequacy of the method was verified. Goat’s tracking data was obtained using a video tracking system and used to estimate whether they, which are in “estrus” or “non-estrus”, were in either states: “approaching the male”, or “standing near the male”. Totally, the PC of random forest seems to be the highest. However, The percentage concordance (PC) value besides the goats whose data were used for training data sets is relatively low. It is suggested that random forest tend to over-fit to training data. Besides random forest, the PC of HMMs and SVMs is high. However, considering the calculation time and HMM’s advantage in that it is a time series model, HMM is better method. The PC of neural network is totally low, however, if the more goat’s data were acquired, neural network would be an adequate method for estimation.


2021 ◽  
Author(s):  
Rui Liu ◽  
Xin Yang ◽  
Chong Xu ◽  
Luyao Li ◽  
Xiangqiang Zeng

Abstract Landslide susceptibility mapping (LSM) is a useful tool to estimate the probability of landslide occurrence, providing a scientific basis for natural hazards prevention, land use planning, and economic development in landslide-prone areas. To date, a large number of machine learning methods have been applied to LSM, and recently the advanced Convolutional Neural Network (CNN) has been gradually adopted to enhance the prediction accuracy of LSM. The objective of this study is to introduce a CNN based model in LSM and systematically compare its overall performance with the conventional machine learning models of random forest, logistic regression, and support vector machine. Herein, we selected the Jiuzhaigou region in Sichuan Province, China as the study area. A total number of 710 landslides and 12 predisposing factors were stacked to form spatial datasets for LSM. The ROC analysis and several statistical metrics, such as accuracy, root mean square error (RMSE), Kappa coefficient, sensitivity, and specificity were used to evaluate the performance of the models in the training and validation datasets. Finally, the trained models were calculated and the landslide susceptibility zones were mapped. Results suggest that both CNN and conventional machine-learning based models have a satisfactory performance (AUC: 85.72% − 90.17%). The CNN based model exhibits excellent good-of-fit and prediction capability, and achieves the highest performance (AUC: 90.17%) but also significantly reduces the salt-of-pepper effect, which indicates its great potential of application to LSM.


2021 ◽  
Author(s):  
Qifei Zhao ◽  
Xiaojun Li ◽  
Yunning Cao ◽  
Zhikun Li ◽  
Jixin Fan

Abstract Collapsibility of loess is a significant factor affecting engineering construction in loess area, and testing the collapsibility of loess is costly. In this study, A total of 4,256 loess samples are collected from the north, east, west and middle regions of Xining. 70% of the samples are used to generate training data set, and the rest are used to generate verification data set, so as to construct and validate the machine learning models. The most important six factors are selected from thirteen factors by using Grey Relational analysis and multicollinearity analysis: burial depth、water content、specific gravity of soil particles、void rate、geostatic stress and plasticity limit. In order to predict the collapsibility of loess, four machine learning methods: Support Vector Machine (SVM), Random Subspace Based Support Vector Machine (RSSVM), Random Forest (RF) and Naïve Bayes Tree (NBTree), are studied and compared. The receiver operating characteristic (ROC) curve indicators, standard error (SD) and 95% confidence interval (CI) are used to verify and compare the models in different research areas. The results show that: RF model is the most efficient in predicting the collapsibility of loess in Xining, and its AUC average is above 80%, which can be used in engineering practice.


2020 ◽  
Vol 12 (8) ◽  
pp. 3269
Author(s):  
Shinyoung Kwag ◽  
Daegi Hahm ◽  
Minkyu Kim ◽  
Seunghyun Eem

The objective of this study is to propose a model that can predict the seismic performance of slope relatively accurately and efficiently by using machine learning methods. Probabilistic seismic fragility analyses of the slope had been carried out in other studies, and a closed-form equation for slope seismic performance was proposed through a multiple linear regression analysis. However, the traditional statistical linear regression analysis showed a limit that could not accurately represent such nonlinear slope seismic performances. To overcome this limit, in this study, we used three machine learning methods (i.e., support vector machine (SVM), artificial neural network (ANN), Gaussian process regression (GPR)) to generate prediction models of the slope seismic performance. The models obtained through the machine learning methods basically showed better performance compared to the models of the traditional statistical methods. The results of the SVM showed no significant performance difference compared with the results of the nonlinear regression analysis method, but the results based on the ANN and GPR showed a remarkable improvement in the prediction performance over the other models. Furthermore, this study confirmed that the GPR-based model predicted relatively accurate seismic performance values compared with the model through the ANN.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Yeresime Suresh ◽  
Lov Kumar ◽  
Santanu Ku. Rath

Experimental validation of software metrics in fault prediction for object-oriented methods using statistical and machine learning methods is necessary. By the process of validation the quality of software product in a software organization is ensured. Object-oriented metrics play a crucial role in predicting faults. This paper examines the application of linear regression, logistic regression, and artificial neural network methods for software fault prediction using Chidamber and Kemerer (CK) metrics. Here, fault is considered as dependent variable and CK metric suite as independent variables. Statistical methods such as linear regression, logistic regression, and machine learning methods such as neural network (and its different forms) are being applied for detecting faults associated with the classes. The comparison approach was applied for a case study, that is, Apache integration framework (AIF) version 1.6. The analysis highlights the significance of weighted method per class (WMC) metric for fault classification, and also the analysis shows that the hybrid approach of radial basis function network obtained better fault prediction rate when compared with other three neural network models.


Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 21
Author(s):  
Yury Rodimkov ◽  
Evgeny Efimenko ◽  
Valentin Volokitin ◽  
Elena Panova ◽  
Alexey Polovinkin ◽  
...  

When entering the phase of big data processing and statistical inferences in experimental physics, the efficient use of machine learning methods may require optimal data preprocessing methods and, in particular, optimal balance between details and noise. In experimental studies of strong-field quantum electrodynamics with intense lasers, this balance concerns data binning for the observed distributions of particles and photons. Here we analyze the aspect of binning with respect to different machine learning methods (Support Vector Machine (SVM), Gradient Boosting Trees (GBT), Fully-Connected Neural Network (FCNN), Convolutional Neural Network (CNN)) using numerical simulations that mimic expected properties of upcoming experiments. We see that binning can crucially affect the performance of SVM and GBT, and, to a less extent, FCNN and CNN. This can be interpreted as the latter methods being able to effectively learn the optimal binning, discarding unnecessary information. Nevertheless, given limited training sets, the results indicate that the efficiency can be increased by optimizing the binning scale along with other hyperparameters. We present specific measurements of accuracy that can be useful for planning of experiments in the specified research area.


Author(s):  
Akshay Rajendra Naik ◽  
A. V. Deorankar ◽  
P. B. Ambhore

Rainfall prediction is useful for all people for decision making in all fields, such as out door gamming, farming, traveling, and factory and for other activities. We studied various methods for rainfall prediction such as machine learning and neural networks. There is various machine learning algorithms are used in previous existing methods such as naïve byes, support vector machines, random forest, decision trees, and ensemble learning methods. We used deep neural network for rainfall prediction, and for optimization of deep neural network Adam optimizer is used for setting modal parameters, as a result our method gives better results as compare to other machine learning methods.


2021 ◽  
Vol 12 ◽  
Author(s):  
Runbin Sun ◽  
Haokai Zhao ◽  
Shuzhen Huang ◽  
Ran Zhang ◽  
Zhenyao Lu ◽  
...  

Liver has an ability to regenerate itself in mammals, whereas the mechanism has not been fully explained. Here we used a GC/MS-based metabolomic method to profile the dynamic endogenous metabolic change in the serum of C57BL/6J mice at different times after 2/3 partial hepatectomy (PHx), and nine machine learning methods including Least Absolute Shrinkage and Selection Operator Regression (LASSO), Partial Least Squares Regression (PLS), Principal Components Regression (PCR), k-Nearest Neighbors (KNN), Support Vector Machines (SVM), Random Forest (RF), eXtreme Gradient Boosting (xgbDART), Neural Network (NNET) and Bayesian Regularized Neural Network (BRNN) were used for regression between the liver index and metabolomic data at different stages of liver regeneration. We found a tree-based random forest method that had the minimum average Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and the maximum R square (R2) and is time-saving. Furthermore, variable of importance in the project (VIP) analysis of RF method was performed and metabolites with VIP ranked top 20 were selected as the most critical metabolites contributing to the model. Ornithine, phenylalanine, 2-hydroxybutyric acid, lysine, etc. were chosen as the most important metabolites which had strong correlations with the liver index. Further pathway analysis found Arginine biosynthesis, Pantothenate and CoA biosynthesis, Galactose metabolism, Valine, leucine and isoleucine degradation were the most influenced pathways. In summary, several amino acid metabolic pathways and glucose metabolism pathway were dynamically changed during liver regeneration. The RF method showed advantages for predicting the liver index after PHx over other machine learning methods used and a metabolic clock containing four metabolites is established to predict the liver index during liver regeneration.


Sign in / Sign up

Export Citation Format

Share Document