scholarly journals Impact of crop field burning and mountains on heavy haze in the North China Plain: a case study

2016 ◽  
Vol 16 (15) ◽  
pp. 9675-9691 ◽  
Author(s):  
Xin Long ◽  
Xuexi Tie ◽  
Junji Cao ◽  
Rujin Huang ◽  
Tian Feng ◽  
...  

Abstract. With the provincial statistical data and crop field burning (CFB) activities captured by Moderate Resolution Imaging Spectroradiometer (MODIS), we extracted a detailed CFB emission inventory in the North China Plain (NCP). The WRF-CHEM model was applied to investigate the impact of CFB on air pollution during the period from 6 to 12 October 2014, corresponding to a heavy haze incident with high concentrations of PM2.5 (particulate matter with aerodynamic diameter less than 2.5 µm). The WRF-CHEM model generally performed well in simulating the surface species concentrations of PM2.5, O3 and NO2 compared to the observations; in addition, it reasonably reproduced the observed temporal variations of wind speed, wind direction and planetary boundary layer height (PBLH). It was found that the CFB that occurred in southern NCP (SNCP) had a significant effect on PM2.5 concentrations locally, causing a maximum of 34 % PM2.5 increase. Under continuous southerly wind conditions, the CFB pollution plume went through a long-range transport to northern NCP (NNCP; with several mega cities, including Beijing, the capital city of China), where few CFBs occurred, resulting in a maximum of 32 % PM2.5 increase. As a result, the heavy haze in Beijing was enhanced by the CFB, which occurred in SNCP. Mountains also play significant roles in enhancing the PM2.5 pollution in NNCP through the blocking effect. The mountains blocked and redirected the airflows, causing the pollutant accumulations along the foothills of mountains. This study suggests that the prohibition of CFB should be strict not only in or around Beijing, but also on the ulterior crop growth areas of SNCP. PM2.5 emissions in SNCP should be significantly limited in order to reduce the occurrences of heavy haze events in the NNCP region.

2016 ◽  
Author(s):  
X. Long ◽  
X. X. Tie ◽  
J. J. Cao ◽  
R. J. Huang ◽  
T. Feng ◽  
...  

Abstract. Crop field burning (CFB) has important effects on air pollution in China, but it is seldom quantified and reported in a regional scale, which is of great importance for the control strategies of CFB in China, especially in the North China Plain (NCP). With the provincial statistical data and open crop fires captured by satellite (MODIS), we extracted a detailed emission inventory of CFB during a heavy haze event from 6th to 12th October 2014. A regional dynamical and chemical model (WRF-Chem) was applied to investigate the impact of CFB on air pollution in NCP. The model simulations were compared with the in situ measurements of PM2.5 (particular matter with radius less than 2.5 μm) concentrations. The model evaluation shows that the correlation coefficients (R) between measured and calculated values exceeds 0.80 and absolute normalized mean bias (NMB) is no more than 14 %. In addition, the simulated meteorological parameters such as winds and planetary boundary layer height (PBLH) are also in good agreement with observations. The model was intensive used to study (1) the impacts of CFB and (2) the effect of mountains on regional air quality. The results show that the CFB occurred in southern NCP (SNCP) had significant effect on PM2.5 concentrations locally, causing a maximum of 35 % PM2.5 increase in SNCP. Because of south wind condition, the CFB pollution plume is subjective a long transport to northern NCP (NNCP-with several mega cities, including Beijing of the capital city in China), where there are no significant CFB occurrences, causing a maximum of 32 % PM2.5 increase in NNCP. As a result, the heavy haze in Beijing is enhanced by the CFB occurred in SNCP. Further more, there are two major mountains located in the western and northern NCP. Under the south wind condition, these mountains play important roles in enhancing the PM2.5 pollution in NNCP through the blocking and guiding effects. This study suggests that the PM2.5 emissions in SNCP region should be significantly limited in order to reduce the occurrences of heavy haze events in NNCP region, including the Beijing City.


2018 ◽  
Author(s):  
Tianning Su ◽  
Zhanqing Li ◽  
Ralph Kahn

Abstract. The frequent occurrence of severe air pollution episodes in China has raised great concerns with the public and scientific communities. Planetary boundary layer height (PBLH) is a key factor in the vertical mixing and dilution of near-surface pollutants. However, the relationship between PBLH and surface pollutants, especially particulate matter (PM) concentration, across the whole of China, is not yet well understood. We investigate this issue at ~ 1500 surface stations using PBLH derived from space-borne and ground-based lidar, and discuss the influence of topography and meteorological variables on the PBLH-PM relationship. A generally negative correlation is observed between PM and the PBLH, albeit varying greatly in magnitude with location and season. Correlations are much weaker over the highlands than plains regions, which may be associated with lower pollution levels and mountain breezes. The influence of horizontal transport on surface PM is considered as well, manifested as a negative correlation between surface PM and wind speed over the whole nation. Strong wind with clean upwind sources plays a dominant role in removing pollutants, and leads to weak PBLH-PM correlation. A ventilation rate is introduced to jointly consider horizontal and vertical dispersion, which has the largest impact on surface pollutant accumulation over the North China Plain. Aerosol absorption feedbacks also appear to affect the PBLH-PM relationship, as revealed via comparing air pollution in Beijing and Hong Kong. Absorbing aerosols in high concentrations likely contribute to the significant PBLH-PM correlation over the North China Plain (e.g., during winter). As major precursor emissions for secondary aerosols, sulfur dioxide, nitrogen dioxide, and carbon monoxide have similar negative responses to increased PBLH, whereas ozone is positively correlated with PBLH over most regions, which may be caused by heterogeneous reactions and photolysis rates.


2018 ◽  
Vol 201 ◽  
pp. 235-246 ◽  
Author(s):  
Jianan Zou ◽  
Zirui Liu ◽  
Bo Hu ◽  
Xiaojuan Huang ◽  
Tianxue Wen ◽  
...  

2016 ◽  
Vol 8 (4) ◽  
pp. 613-633 ◽  
Author(s):  
Lijuan Zhang ◽  
Jinxia Wang ◽  
Guangsheng Zhang ◽  
Qiuqiong Huang

Purpose The purpose of this paper is: to track the methods by which farmers access groundwater for irrigation in the North China Plain (NCP); to explore whether climate factors influence farmers’ decisions on the methods of groundwater access for irrigation; and to examine whether the amount of groundwater use for irrigation and crop yield systematically differ across groups of farmers using various methods of groundwater access, and how climate factors affect them. Design/methodology/approach Descriptive statistical analysis and econometric models are used on household survey data collected over several years and county-level climate data. Findings Over the past few decades, a significant share of farmers have switched the methods of groundwater access from collective tubewells to own tubewells or groundwater markets. Farmers who bought water from groundwater markets applied less water to wheat plots than those who had their own tubewells. However, wheat yield was not negatively affected. Both average climate conditions and long-term variations were found to be related to farmers’ choice of methods of groundwater access for irrigation. More frequent droughts and increasingly volatile temperatures both increased the likelihood of farmers gaining groundwater irrigation from markets. Originality/value The analysis results suggest farmers are using groundwater markets to help them adapt to climate change. Applying empirical analysis to identify the impact of the methods by which farmers access groundwater for irrigation on the amount of groundwater use and crop yield will help policy makers design reasonable adaptation policies for the NCP.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Long-Fei Zhan ◽  
Yanjun Wang ◽  
Hemin Sun ◽  
Jianqing Zhai ◽  
Mingjin Zhan

In accordance with the China Meteorological Administration definition, this study considered a weather process with a maximum surface temperature of ≥35°C for more than three consecutive days as a heatwave event. Based on a dataset of daily maximum temperatures from meteorological stations on the North China Plain, including ordinary and national basic/reference surface stations, the intensity-area-duration method was used to analyze the spatiotemporal distribution characteristics of heatwave events on the North China Plain (1961–2017). Moreover, based on demographic data from the Statistical Yearbook and Greenhouse Gas Initiative (GGI) Population Scenario Database of the Austrian Institute for International Applied Systems Analysis (IIASA), population exposure to heatwave events was also studied. The results showed that the frequency, intensity, and area of impact of heatwave events on the North China Plain initially decreased (becoming weaker and less extensive) and then increased (becoming stronger and more extensive). Similarly, the trend of population exposure to heatwave events initially decreased and then increased, and the central position of exposure initially moved southward and then returned northward. Population exposure in the eastern Taihang Mountains was found significantly higher than in the western Taihang Mountains. In relation to the change of population exposure to heatwave events on the North China Plain, the influence of climatic factors was found dominant with an absolute contribution rate of >75%. Except for 2011–2017, increase in population also increased the exposure to heatwaves, particularly in the first half of the study period. Interaction between climatic and population factors generally had less impact on population exposure than either climatic factors or population factors alone. This study demonstrated a method for assessing the impact of heatwave events on population exposure, which could form a scientific basis for the development of government policy regarding adaption to climate change.


2016 ◽  
Vol 16 (17) ◽  
pp. 10985-11000 ◽  
Author(s):  
Yin Wang ◽  
Zhongming Chen ◽  
Qinqin Wu ◽  
Hao Liang ◽  
Liubin Huang ◽  
...  

Abstract. Measurements of atmospheric peroxides were made during Wangdu Campaign 2014 at Wangdu, a rural site in the North China Plain (NCP) in summer 2014. The predominant peroxides were detected to be hydrogen peroxide (H2O2), methyl hydroperoxide (MHP) and peroxyacetic acid (PAA). The observed H2O2 reached up to 11.3 ppbv, which was the highest value compared with previous observations in China at summer time. A box model simulation based on the Master Chemical Mechanism and constrained by the simultaneous observations of physical parameters and chemical species was performed to explore the chemical budget of atmospheric peroxides. Photochemical oxidation of alkenes was found to be the major secondary formation pathway of atmospheric peroxides, while contributions from alkanes and aromatics were of minor importance. The comparison of modeled and measured peroxide concentrations revealed an underestimation during biomass burning events and an overestimation on haze days, which were ascribed to the direct production of peroxides from biomass burning and the heterogeneous uptake of peroxides by aerosols, respectively. The strengths of the primary emissions from biomass burning were on the same order of the known secondary production rates of atmospheric peroxides during the biomass burning events. The heterogeneous process on aerosol particles was suggested to be the predominant sink for atmospheric peroxides. The atmospheric lifetime of peroxides on haze days in summer in the NCP was about 2–3 h, which is in good agreement with the laboratory studies. Further comprehensive investigations are necessary to better understand the impact of biomass burning and heterogeneous uptake on the concentration of peroxides in the atmosphere.


2013 ◽  
Vol 13 (16) ◽  
pp. 8285-8302 ◽  
Author(s):  
K. Kawamura ◽  
E. Tachibana ◽  
K. Okuzawa ◽  
S. G. Aggarwal ◽  
Y. Kanaya ◽  
...  

Abstract. Aerosol (TSP) samples were collected at the summit of Mount Tai (elevation: 1534 m a.s.l., 36.25° N, 117.10° E) located in the North China Plain using a high-volume air sampler and pre-combusted quartz filters. Sampling was conducted on day/night or 3 h basis in the period from 29 May to 28 June 2006 during the field burning of wheat straw residue and the post-burning season. The filter samples were analyzed for low-molecular-weight dicarboxylic acids, ketoacids and α-dicarbonyls using capillary gas chromatography (GC) and GC-MS employing water extraction and butyl ester derivatization. Molecular distributions of dicarboxylic acids (C2-C11, 220–6070 ng m−3) were characterized by a predominance of oxalic (C2) acid (105–3920 ng m−3) followed by succinic (C4) or malonic (C3) acid. Unsaturated aliphatic diacids, including maleic (M), isomaleic (iM) and fumaric (F) acids, were also detected together with aromatic diacids (phthalic, isophthalic and terephthalic acids). ω-oxocarboxylic acids (C2-C9, 24–610 ng m−3) were detected as the second most abundant compound class with the predominance of glyoxylic acid (11–360 ng m−3), followed by α-ketoacid (pyruvic acid, 3–140 ng m−3) and α-dicarbonyls (glyoxal, 1–230 ng m−3 and methylglyoxal, 2–120 ng m−3). We found that these levels (>6000 ng m−3 for diacids) are several times higher than those reported in Chinese megacities at ground levels. The concentrations of diacids increased from late May to early June, showing a maximum on 7 June, and then significantly decreased during the period 8–11 June, when the wind direction shifted from southerly to northerly. Similar temporal trends were found for ketocarboxylic acids and α-dicarbonyls as well as total carbon (TC) and water-soluble organic carbon (WSOC). The temporal variations of water-soluble organics were interpreted by the direct emission from the field burning of agricultural wastes (wheat straw) in the North China Plain and the subsequent photochemical oxidation of volatile and semi-volatile organic precursors emitted from field burning as well as dark ozonolysis of volatile organic compounds and other organics, accretion reactions and oxidation of nonvolatile organics such as unsaturated fatty acids. This study demonstrates that the field burning of agricultural wastes in early summer strongly influenced the air quality of the free troposphere over the North China Plain.


2013 ◽  
Vol 13 (2) ◽  
pp. 3695-3734 ◽  
Author(s):  
K. Kawamura ◽  
E. Tachibana ◽  
K. Okuzawa ◽  
S. G. Aggarwal ◽  
Y. Kanaya ◽  
...  

Abstract. Aerosol (TSP) samples were collected at the summit of Mount Tai (elevation: 1534 m a.s.l., 36.25° N; 117.10° E) located in the North China Plain using a high-volume air sampler and pre-combusted quartz filters. Sampling was conducted on day/night or 3 h basis in the period from 29 May to 28 June 2006 during the field burning of wheat straw residue and the post-burning season. The filter samples were analyzed for low molecular weight dicarboxylic acids, ketoacids and α-dicarbonyls using capillary gas chromatography (GC) and GC-MS employing water extraction and butyl ester derivatization. Dicarboxylic acids (C2–C11, 220–6070 ng m−3) were characterized by a predominance of oxalic (C2) acid (105–3920 ng m−3) followed by succinic (C4) or malonic (C3) acid. Unsaturated aliphatic diacids, including maleic (M), isomaleic (iM) and fumaric (F) acid, were also detected together with aromatic diacids (phthalic, iso-phthalic and tere-phthalic acids). ω-Oxocarboxylic acids (C2–C9, 24–610 ng m−3) were detected as the second most abundant compound class with the predominance of glyoxylic acid (11–360 ng m−3), followed by α-ketoacid (pyruvic acid, 3–140 ng m−3) and α-dicarbonyls (glyoxal, 1–230 ng m−3 and methylglyoxal, 2–120 ng m−3). We found that these levels (> 6000 ng m−3 for diacids) are several times higher than those reported in Chinese megacities at ground levels. The concentrations of diacids increased from late May to early June showing a maximum on 7 June and then significantly decreased during 8–11 June when the wind direction shifted from northeasterly to northerly. Similar temporal trends were found for ketocarboxylic acids and α-dicarbonyls as well as total carbon (TC) and water-soluble organic carbon (WSOC). The temporal variations of water-soluble organics were interpreted by the direct emission from the field burning products of agricultural wastes (wheat straw) in the North China Plain and the subsequent photochemical oxidation of volatile and semi-volatile organic precursors emitted from field burning. This study demonstrates that the field burning of agricultural wastes in early summer strongly influenced the air quality of the free troposphere over the North China Plain.


Sign in / Sign up

Export Citation Format

Share Document