scholarly journals NO<sub><i>x</i></sub> emission trends over Chinese cities estimated from OMI observations during 2005 to 2015

2017 ◽  
Vol 17 (15) ◽  
pp. 9261-9275 ◽  
Author(s):  
Fei Liu ◽  
Steffen Beirle ◽  
Qiang Zhang ◽  
Ronald J. van der A ◽  
Bo Zheng ◽  
...  

Abstract. Satellite nitrogen dioxide (NO2) observations have been widely used to evaluate emission changes. To determine trends in nitrogen oxides (NOx) emission over China, we used a method independent of chemical transport models to quantify the NOx emissions from 48 cities and seven power plants over China, on the basis of Ozone Monitoring Instrument (OMI) NO2 observations from 2005 to 2015. We found that NOx emissions over 48 Chinese cities increased by 52 % from 2005 to 2011 and decreased by 21 % from 2011 to 2015. The decrease since 2011 could be mainly attributed to emission control measures in power sector; while cities with different dominant emission sources (i.e., power, industrial, and transportation sectors) showed variable emission decline timelines that corresponded to the schedules for emission control in different sectors. The time series of the derived NOx emissions was consistent with the bottom-up emission inventories for all power plants (r = 0. 8 on average), but not for some cities (r = 0. 4 on average). The lack of consistency observed for cities was most probably due to the high uncertainty of bottom-up urban emissions used in this study, which were derived from downscaling the regional-based emission data to city level by using spatial distribution proxies.

2017 ◽  
Author(s):  
Fei Liu ◽  
Steffen Beirle ◽  
Qiang Zhang ◽  
Ronald J. van der A ◽  
Bo Zheng ◽  
...  

Abstract. Satellite NO2 observations have been widely used to evaluate emission changes. To determine trends in NOx emission over China, we used a method independent of chemical transport models to quantify the NOx emissions from 48 cities and 7 power plants over China, on the basis of Ozone Monitoring Instrument (OMI) NO2 observations during 2005 to 2015. We found that NOx emissions over 48 Chinese cities increased by 52 % from 2005 to 2011 and decreased by 21 % from 2011 to 2015. The decrease since 2011 could be mainly attributed to emission control measures in power sector; while cities with different dominant emission sources (i.e. power, industrial and transportation sectors) showed variable emission decline timelines that corresponded to the schedules for emission control in different sectors. The time series of the derived NOx emissions was consistent with the bottom-up emission inventories for all power plants (r = 0.8 on average), but not for some cities (r = 0.4 on average). The lack of consistency observed for cities was most probably due to the high uncertainty of bottomup urban emissions used in this study, which were derived from downscaling the regional-based emission data to cities by using spatial distribution proxies.


2012 ◽  
Vol 12 (9) ◽  
pp. 24985-25036 ◽  
Author(s):  
Y. Zhao ◽  
J. Zhang ◽  
C. P. Nielsen

Abstract. To examine the effects of China's national policies of energy conservation and emission control during 2005–2010, inter-annual emission trends of gaseous pollutants, primary aerosols, and CO2 are estimated with a bottom-up framework. The control measures led to improved energy efficiency and/or increased penetration of emission control devices at power plants and other important industrial sources, yielding reduced emission factors for all evaluated species except NOx. The national emissions of anthropogenic SO2, CO, and total primary PM (particulate matter) in 2010 are estimated to have been 89%, 108%, and 86% of those in 2005, respectively, suggesting successful emission control of those species despite fast growth of the economy and energy consumption during the period. The emissions of NOx and CO2, however, are estimated to have increased by 48% and 43%, respectively, indicating that they remain largely determined by the growth of energy use, industrial production, and vehicle populations. Based on application of a Monte-Carlo framework, estimated uncertainties of SO2 and PM emissions increased from 2005 to 2010, resulting mainly from weakly understood average SO2 removal efficiency in flue gas desulfurization (FGD) systems in the power sector, and unclear changes in the penetration levels of dust collectors at industrial sources, respectively. While emission trends determined by bottom-up methods can be generally verified by observations from both ground stations and satellites, clear discrepancies exist for given regions and seasons, indicating a need for more accurate spatial and time distributions of emissions. Limitations of current emission control polices are analyzed based on the estimated emission trends. Compared with control of total PM, there are fewer gains in control of fine particles and carbonaceous aerosols, the PM forms most responsible for damages to public health and effects on radiative forcing. A decrease of alkaline base cations as primary PM that is much faster than that of SO2 may have raised the acidification risks to ecosystems, indicating further control of acid precursors is required. Moreover, with relatively strict controls in developed urban areas, air pollution challenges have been expanding to less-developed neighboring regions. There is a great need in the future for multi-pollutant control strategies that combine recognition of diverse environmental impacts both in urban and rural areas with emission abatement of multiple species in concert.


2013 ◽  
Vol 13 (2) ◽  
pp. 487-508 ◽  
Author(s):  
Y. Zhao ◽  
J. Zhang ◽  
C. P. Nielsen

Abstract. To examine the effects of China's national policies of energy conservation and emission control during 2005–2010, inter-annual emission trends of gaseous pollutants, primary aerosols, and CO2 are estimated with a bottom-up framework. The control measures led to improved energy efficiency and/or increased penetration of emission control devices at power plants and other important industrial sources, yielding reduced emission factors for all evaluated species except NOx. The national emissions of anthropogenic SO2, CO, and total primary PM (particulate matter) in 2010 are estimated to have been 89%, 108%, and 87% of those in 2005, respectively, suggesting successful emission control of those species despite fast growth of the economy and energy consumption during the period. The emissions of NOx and CO2, however, are estimated to have increased by 47% and 43%, respectively, indicating that they remain largely determined by the growth of energy use, industrial production, and vehicle populations. Based on application of a Monte-Carlo framework, estimated uncertainties of SO2 and PM emissions increased from 2005 to 2010, resulting mainly from poorly understood average SO2 removal efficiency in flue gas desulfurization (FGD) systems in the power sector, and unclear changes in the penetration levels of dust collectors at industrial sources, respectively. While emission trends determined by bottom-up methods can be generally verified by observations from both ground stations and satellites, clear discrepancies exist for given regions and seasons, indicating a need for more accurate spatial and time distributions of emissions. Limitations of current emission control polices are analyzed based on the estimated emission trends. Compared with control of total PM, there are fewer gains in control of fine particles and carbonaceous aerosols, the PM components most responsible for damages to public health and effects on radiative forcing. A much faster decrease of alkaline base cations in primary PM than that of SO2 may have raised the acidification risks to ecosystems, indicating further control of acid precursors is required. Moreover, with relatively strict controls in developed urban areas, air pollution challenges have been expanding to less-developed neighboring regions. There is a great need in the future for multi-pollutant control strategies that combine recognition of diverse environmental impacts both in urban and rural areas with emission abatement of multiple species in concert.


Author(s):  
Daniel-Eduard Constantin ◽  
Corina Bocăneala ◽  
Mirela Voiculescu ◽  
Adrian Roşu ◽  
Alexis Merlaud ◽  
...  

The aim of this paper is to investigate the evolution of SO2 and NOx emissions of ten very large combustion plants (LCPs >500 MW) located in the European Union (EU) during 2005–2015. The evolution of NOx and SO2 emissions were analyzed against the EU Directives in force during 2005–2015. The investigation was performed using space-borne observations and estimated emissions collected from the EEA (European Environment Agency) inventory of air pollutant emissions. The power plants were chosen according to their capacity and emissions, located in various parts of Europe, to give an overall picture of atmospheric pollution with NOx and SO2 associated with the activity of very large LCPs in Europe. Satellite observations from OMI (Ozone Monitoring Instrument) are compared with calculated emissions in order to assess whether satellite observations can be used to monitor air quality, as a standard procedure, by governmental or nongovernmental institutions. Our results show that both space observations and estimated emissions of NOx and SO2 atmospheric content have a descending trend until 2010, complying with the EU Directives. The financial and economic crisis during 2007–2009 played an important role in reducing emissions.


2018 ◽  
Vol 18 (5) ◽  
pp. 3433-3456 ◽  
Author(s):  
Meng Li ◽  
Zbigniew Klimont ◽  
Qiang Zhang ◽  
Randall V. Martin ◽  
Bo Zheng ◽  
...  

Abstract. Bottom-up emission inventories provide primary understanding of sources of air pollution and essential input of chemical transport models. Focusing on SO2 and NOx, we conducted a comprehensive evaluation of two widely used anthropogenic emission inventories over China, ECLIPSE and MIX, to explore the potential sources of uncertainties and find clues to improve emission inventories. We first compared the activity rates and emission factors used in two inventories and investigated the reasons of differences and the impacts on emission estimates. We found that SO2 emission estimates are consistent between two inventories (with 1 % differences), while NOx emissions in ECLIPSE's estimates are 16 % lower than those of MIX. The FGD (flue-gas desulfurization) device penetration rate and removal efficiency, LNB (low-NOx burner) application rate and abatement efficiency in power plants, emission factors of industrial boilers and various vehicle types, and vehicle fleet need further verification. Diesel consumptions are quite uncertain in current inventories. Discrepancies at the sectorial and provincial levels are much higher than those of the national total. We then examined the impacts of different inventories on model performance by using the nested GEOS-Chem model. We finally derived top-down emissions by using the retrieved columns from the Ozone Monitoring Instrument (OMI) compared with the bottom-up estimates. High correlations were observed for SO2 between model results and OMI columns. For NOx, negative biases in bottom-up gridded emission inventories (−21 % for MIX, −39 % for ECLIPSE) were found compared to the satellite-based emissions. The emission trends from 2005 to 2010 estimated by two inventories were both consistent with satellite observations. The inventories appear to be fit for evaluation of the policies at an aggregated or national level; more work is needed in specific areas in order to improve the accuracy and robustness of outcomes at finer spatial and also technological levels. To our knowledge, this is the first work in which source comparisons detailed to technology-level parameters are made along with the remote sensing retrievals and chemical transport modeling. Through the comparison between bottom-up emission inventories and evaluation with top-down information, we identified potential directions for further improvement in inventory development.


2021 ◽  
Author(s):  
Richard J. Pope ◽  
Rebecca Kelly ◽  
Eloise A. Marais ◽  
Ailish M. Graham ◽  
Chris Wilson ◽  
...  

Abstract. Nitrogen oxides (NOx, NO+NO2) are potent air pollutants which directly impact on human health and which aid the formation of other hazardous pollutants such as ozone (O3) and particulate matter. In this study, we use satellite tropospheric column nitrogen dioxide (TCNO2) data to evaluate the spatiotemporal variability and magnitude of the United Kingdom (UK) bottom-up National Atmospheric Emissions Inventory (NAEI) NOx emissions. Although emissions and TCNO2 represent different quantities, for UK city sources we find a spatial correlation of ~0.5 between the NAEI NOx emissions and TCNO2 from the high-spatial-resolution TROPOspheric Monitoring Instrument (TROPOMI), suggesting a good spatial distribution of emission sources in the inventory. Between 2005 and 2015, the NAEI total UK NOx emissions and long-term TCNO2 record from the Ozone Monitoring Instrument (OMI), averaged over England, show decreasing trends of 4.4 % and 2.2 %, respectively. Top-down NOx emissions were derived in this study by applying a simple mass balance approach to TROPOMI observed downwind NO2 plumes from city sources. Overall, these top-down estimates were consistent with the NAEI, but for larger cities such as London and Manchester the inventory is significantly (> 25 %) less than the top-down emissions. This NAEI NOx emission underestimate is supported by comparing simulations from the GEOS-Chem atmospheric chemistry model, driven by the NAEI emissions, with satellite and surface NO2 observations over the UK. This yields substantial model negative biases, providing further evidence to demonstrate that the NAEI may be underestimating NOx emissions in London and Manchester.


2015 ◽  
Vol 15 (18) ◽  
pp. 10367-10383 ◽  
Author(s):  
Z. Lu ◽  
D. G. Streets ◽  
B. de Foy ◽  
L. N. Lamsal ◽  
B. N. Duncan ◽  
...  

Abstract. Satellite remote sensing of tropospheric nitrogen dioxide (NO2) can provide valuable information for estimating surface nitrogen oxides (NOx) emissions. Using an exponentially modified Gaussian (EMG) method and taking into account the effect of wind on observed NO2 distributions, we estimate 3-year moving-average emissions of summertime NOx from 35 US (United States) urban areas directly from NO2 retrievals of the Ozone Monitoring Instrument (OMI) during 2005–2014. Following conclusions of previous studies that the EMG method provides robust and accurate emission estimates under strong-wind conditions, we derive top-down NOx emissions from each urban area by applying the EMG method to OMI data with wind speeds greater than 3–5 m s−1. Meanwhile, we find that OMI NO2 observations under weak-wind conditions (i.e., < 3 m s−1) are qualitatively better correlated to the surface NOx source strength in comparison to all-wind OMI maps; therefore, we use them to calculate the satellite-observed NO2 burdens of urban areas and compare with NOx emission estimates. The EMG results show that OMI-derived NOx emissions are highly correlated (R > 0.93) with weak-wind OMI NO2 burdens as well as with bottom-up NOx emission estimates over 35 urban areas, implying a linear response of the OMI observations to surface emissions under weak-wind conditions. The simultaneous EMG-obtained effective NO2 lifetimes (~ 3.5 ± 1.3 h), however, are biased low in comparison to the summertime NO2 chemical lifetimes. In general, isolated urban areas with NOx emission intensities greater than ~ 2 Mg h−1 produce statistically significant weak-wind signals in 3-year average OMI data. From 2005 to 2014, we estimate that total OMI-derived NOx emissions over all selected US urban areas decreased by 49 %, consistent with reductions of 43, 47, 49, and 44 % in the total bottom-up NOx emissions, the sum of weak-wind OMI NO2 columns, the total weak-wind OMI NO2 burdens, and the averaged NO2 concentrations, respectively, reflecting the success of NOx control programs for both mobile sources and power plants. The decrease rates of these NOx-related quantities are found to be faster (i.e., −6.8 to −9.3 % yr−1) before 2010 and slower (i.e., −3.4 to −4.9 % yr−1) after 2010. For individual urban areas, we calculate the R values of pair-wise trends among the OMI-derived and bottom-up NOx emissions, the weak-wind OMI NO2 burdens, and ground-based NO2 measurements, and high correlations are found for all urban areas (median R= 0.8), particularly large ones (R up to 0.97). The results of the current work indicate that using the EMG method and considering the wind effect, the OMI data allow for the estimation of NOx emissions from urban areas and the direct constraint of emission trends with reasonable accuracy.


2020 ◽  
Vol 20 (1) ◽  
pp. 99-116 ◽  
Author(s):  
Fei Liu ◽  
Bryan N. Duncan ◽  
Nickolay A. Krotkov ◽  
Lok N. Lamsal ◽  
Steffen Beirle ◽  
...  

Abstract. We present a method to infer CO2 emissions from individual power plants based on satellite observations of co-emitted nitrogen dioxide (NO2), which could serve as complementary verification of bottom-up inventories or be used to supplement these inventories. We demonstrate its utility on eight large and isolated US power plants, where accurate stack emission estimates of both gases are available for comparison. In the first step of our methodology, we infer nitrogen oxides (NOx) emissions from US power plants using Ozone Monitoring Instrument (OMI) NO2 tropospheric vertical column densities (VCDs) averaged over the ozone season (May–September) and a “top-down” approach that we previously developed. Second, we determine the relationship between NOx and CO2 emissions based on the direct stack emissions measurements reported by continuous emissions monitoring system (CEMS) programs, accounting for coal quality, boiler firing technology, NOx emission control device type, and any change in operating conditions. Third, we estimate CO2 emissions for power plants using the OMI-estimated NOx emissions and the CEMS NOx∕CO2 emission ratio. We find that the CO2 emissions estimated by our satellite-based method during 2005–2017 are in reasonable agreement with the US CEMS measurements, with a relative difference of 8 %±41 % (mean ± standard deviation). The broader implication of our methodology is that it has the potential to provide an additional constraint on CO2 emissions from power plants in regions of the world without reliable emissions accounting. We explore the feasibility by comparing the derived NOx∕CO2 emission ratios for the US with those from a bottom-up emission inventory for other countries and applying our methodology to a power plant in South Africa, where the satellite-based emission estimates show reasonable consistency with other independent estimates. Though our analysis is limited to a few power plants, we expect to be able to apply our method to more US (and world) power plants when multi-year data records become available from new OMI-like sensors with improved capabilities, such as the TROPOspheric Monitoring Instrument (TROPOMI), and upcoming geostationary satellites, such as the Tropospheric Emissions: Monitoring Pollution (TEMPO) instrument.


2013 ◽  
Vol 13 (6) ◽  
pp. 16047-16112 ◽  
Author(s):  
B. Zhao ◽  
S. X. Wang ◽  
J. Y. Xu ◽  
K. Fu ◽  
Z. Klimont ◽  
...  

Abstract. Nitrogen oxides (NOx) are key pollutants for the improvement of ambient air quality. Within this study we estimated the historical NOx emissions in China for the period 1995–2010, and calculated future NOx emissions every five years until 2030 under six emission scenarios. Driven by the fast growth of energy consumption, we estimate the NOx emissions in China increased rapidly from 11.0 Mt in 1995 to 26.1 Mt in 2010. Power plants, industry and transportation were major sources of NOx emissions, accounting for 28.4, 34.0, and 25.4% of the total NOx emissions in 2010, respectively. Two energy scenarios, a business as usual scenario (BAU) and an alternative policy scenario (PC), were developed to project future energy consumption. In 2030, total energy consumption is projected to increase by 64 and 27% from 2010 level respectively. Three sets of end-of-pipe pollution control measures, including baseline, progressive, and stringent control case, were developed for each energy scenario, thereby constituting six emission scenarios. By 2030, the total NOx emissions are projected to increase (compared to 2010) by 36% in the baseline while policy cases result in reduction up to 61% in the most ambitious case with stringent control measures. More than a third of the reduction achieved by 2030 between least and most ambitious scenario comes from power sector and more than half is distributed equally between industry and transportation sectors. Selective Catalytic Reduction dominates the NOx emission reductions in power plants, while life style changes, control measures for industrial boilers and cement production are major contributors to reductions in industry. Timely enforcement of legislation on heavy duty vehicles would contribute significantly to NOx emission reductions. About 30% of the NOx emission reduction in 2020, and 40% of the NOx emission reduction in 2030 could be treated as the ancillary benefit of energy conservation. Sensitivity analysis was conducted to explore the impact of key factors on future emissions.


2017 ◽  
Vol 17 (4) ◽  
pp. 2971-2980 ◽  
Author(s):  
Tingting Liu ◽  
Sunling Gong ◽  
Jianjun He ◽  
Meng Yu ◽  
Qifeng Wang ◽  
...  

Abstract. In the 2015 winter month of December, northern China witnessed the most severe air pollution phenomena since the 2013 winter haze events occurred. This triggered the first-ever red alert in the air pollution control history of Beijing, with an instantaneous fine particulate matter (PM2. 5) concentration over 1 mg m−3. Air quality observations reveal large temporal–spatial variations in PM2. 5 concentrations over the Beijing–Tianjin–Hebei (Jing-Jin-Ji) area between 2014 and 2015. Compared to 2014, the PM2. 5 concentrations over the area decreased significantly in all months except November and December of 2015, with an increase of 36 % in December. Analysis shows that the PM2. 5 concentrations are significantly correlated with the local meteorological parameters in the Jing-Jin-Ji area such as the stable conditions, relative humidity (RH), and wind field. A comparison of two month simulations (December 2014 and 2015) with the same emission data was performed to explore and quantify the meteorological impacts on the PM2. 5 over the Jing-Jin-Ji area. Observation and modeling results show that the worsening meteorological conditions are the main reasons behind this unusual increase of air pollutant concentrations and that the emission control measures taken during this period of time have contributed to mitigate the air pollution ( ∼  9 %) in the region. This work provides a scientific insight into the emission control measures vs. the meteorology impacts for the period.


Sign in / Sign up

Export Citation Format

Share Document