scholarly journals Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 eruption cloud compared to in situ and satellite observations

2018 ◽  
Vol 18 (5) ◽  
pp. 3223-3247 ◽  
Author(s):  
Thibaut Lurton ◽  
Fabrice Jégou ◽  
Gwenaël Berthet ◽  
Jean-Baptiste Renard ◽  
Lieven Clarisse ◽  
...  

Abstract. Volcanic eruptions impact climate through the injection of sulfur dioxide (SO2), which is oxidized to form sulfuric acid aerosol particles that can enhance the stratospheric aerosol optical depth (SAOD). Besides large-magnitude eruptions, moderate-magnitude eruptions such as Kasatochi in 2008 and Sarychev Peak in 2009 can have a significant impact on stratospheric aerosol and hence climate. However, uncertainties remain in quantifying the atmospheric and climatic impacts of the 2009 Sarychev Peak eruption due to limitations in previous model representations of volcanic aerosol microphysics and particle size, whilst biases have been identified in satellite estimates of post-eruption SAOD. In addition, the 2009 Sarychev Peak eruption co-injected hydrogen chloride (HCl) alongside SO2, whose potential stratospheric chemistry impacts have not been investigated to date. We present a study of the stratospheric SO2–particle–HCl processing and impacts following Sarychev Peak eruption, using the Community Earth System Model version 1.0 (CESM1) Whole Atmosphere Community Climate Model (WACCM) – Community Aerosol and Radiation Model for Atmospheres (CARMA) sectional aerosol microphysics model (with no a priori assumption on particle size). The Sarychev Peak 2009 eruption injected 0.9 Tg of SO2 into the upper troposphere and lower stratosphere (UTLS), enhancing the aerosol load in the Northern Hemisphere. The post-eruption evolution of the volcanic SO2 in space and time are well reproduced by the model when compared to Infrared Atmospheric Sounding Interferometer (IASI) satellite data. Co-injection of 27 Gg HCl causes a lengthening of the SO2 lifetime and a slight delay in the formation of aerosols, and acts to enhance the destruction of stratospheric ozone and mono-nitrogen oxides (NOx) compared to the simulation with volcanic SO2 only. We therefore highlight the need to account for volcanic halogen chemistry when simulating the impact of eruptions such as Sarychev on stratospheric chemistry. The model-simulated evolution of effective radius (reff) reflects new particle formation followed by particle growth that enhances reff to reach up to 0.2 µm on zonal average. Comparisons of the model-simulated particle number and size distributions to balloon-borne in situ stratospheric observations over Kiruna, Sweden, in August and September 2009, and over Laramie, USA, in June and November 2009 show good agreement and quantitatively confirm the post-eruption particle enhancement. We show that the model-simulated SAOD is consistent with that derived from the Optical Spectrograph and InfraRed Imager System (OSIRIS) when both the saturation bias of OSIRIS and the fact that extinction profiles may terminate well above the tropopause are taken into account. Previous modelling studies (involving assumptions on particle size) that reported agreement with (biased) post-eruption estimates of SAOD derived from OSIRIS likely underestimated the climate impact of the 2009 Sarychev Peak eruption.

2017 ◽  
Author(s):  
Thibaut Lurton ◽  
Fabrice Jégou ◽  
Gwenaël Berthet ◽  
Jean-Baptiste Renard ◽  
Lieven Clarisse ◽  
...  

Abstract. Volcanic eruptions impact climate through the injection of sulfur dioxide (SO2), which is oxidized to form sulfuric acid aerosol particles that can enhance the stratospheric aerosol optical depth (SAOD). Besides large-magnitude eruptions, moderate-magnitude eruptions such as Kasatochi in 2008 and Sarychev Peak in 2009 can have a significant impact on stratospheric aerosol and hence climate. However, uncertainties remain in quantifying the atmospheric and climatic impacts of the 2009 Sarychev Peak eruption due to limitations in previous model representations of volcanic aerosol microphysics and particle size, whilst biases have been identified in satellite estimates of post-eruption SAOD. In addition, the 2009 Sarychev Peak eruption co-injected hydrogen chloride (HCl) alongside SO2, whose potential stratospheric chemistry impacts have not been investigated to date. We present a study of the stratospheric SO2-particle-HCl processing and impacts following Sarychev Peak eruption, using the CESM1(WACCM)-CARMA sectional aerosol microphysics model (with no a priori assumption on particle size). The Sarychev Peak 2009 eruption injected 0.9 Tg of SO2 into the upper troposphere and lower stratosphere (UTLS), enhancing the aerosol load in the Northern hemisphere. The post-eruption evolution of the volcanic SO2 in space and time are well reproduced by the model when compared to IASI (Infrared Atmospheric Sounding Interferometer) satellite data. Co-injection of 27 Gg HCl causes a lengthening of the SO2 lifetime and a slight delay in the formation of aerosols, and acts to enhance the destruction of stratospheric ozone and mono-nitrogen oxides (NOx) compared to the simulation with volcanic SO2 only. We therefore highlight the need to account for volcanic halogen chemistry when simulating the impact of eruptions such as Sarychev on stratospheric chemistry. The model-simulated evolution of effective radius (reff), reflects new particle formation followed by particle growth that enhances reff to reach up to 0.2 µm on zonal average. Comparisons of the model-simulated particle number and size-distributions to balloon-borne in-situ stratospheric observations over Kiruna, Sweden, in August and September 2009, and over Laramie, U.S.A., in June and November 2009 show good agreement and quantitatively confirms the post-eruption particle enhancement. We show that the model-simulated SAOD is consistent with that derived from OSIRIS (Optical Spectrograph and InfraRed Imager System) when both the saturation bias of OSIRIS and the fact that extinction profiles may terminate well above the tropopause are taken into account. Previous modelling studies (involving assumptions on particle size) that reported agreement to (biased) post-eruption estimates of SAOD derived from OSIRIS likely underestimated the climate impact of the 2009 Sarychev Peak eruption.


2021 ◽  
Author(s):  
Rafael Castro ◽  
Tushar Mittal ◽  
Stephen Self

<p>The 1883 Krakatau eruption is one of the most well-known historical volcanic eruptions due to its significant global climate impact as well as first recorded observations of various aerosol associated optical and physical phenomena. Although much work has been done on the former by comparison of global climate model predictions/ simulations with instrumental and proxy climate records, the latter has surprisingly not been studied in similar detail. In particular, there is a wealth of observations of vivid red sunsets, blue suns, and other similar features, that can be used to analyze the spatio-temporal dispersal of volcanic aerosols in summer to winter 1883. Thus, aerosol cloud dispersal after the Krakatau eruption can be estimated, bolstered by aerosol cloud behavior as monitored by satellite-based instrument observations after the 1991 Pinatubo eruption. This is one of a handful of large historic eruptions where this analysis can be done (using non-climate proxy methods). In this study, we model particle trajectories of the Krakatau eruption cloud using the Hysplit trajectory model and compare our results with our compiled observational dataset (principally using Verbeek 1884, the Royal Society report, and Kiessling 1884).</p><p>In particular, we explore the effect of different atmospheric states - the quasi-biennial oscillation (QBO) which impacts zonal movement of the stratospheric volcanic plume - to estimate the phase of the QBO in 1883 required for a fast-moving westward cloud. Since this alone is unable to match the observed latitudinal spread of the aerosols, we then explore the impact of an  umbrella cloud (2000 km diameter) that almost certainly formed during such a large eruption. A large umbrella cloud, spreading over ~18 degrees within the duration of the climax of the eruption (6-8 hours), can lead to much quicker latitudinal spread than a point source (vent). We will discuss the results of the combined model (umbrella cloud and correct QBO phase) with historical accounts and observations, as well as previous work on the 1991 Pinatubo eruption. We also consider the likely impacts of water on aerosol concentrations and the relevance of this process for eruptions with possible significant seawater interactions, like Krakatau. We posit that the role of umbrella clouds is an under-appreciated, but significant, process for beginning to model the climatic impacts of large volcanic eruptions.</p>


2015 ◽  
Vol 15 (10) ◽  
pp. 14275-14314 ◽  
Author(s):  
S. Muthers ◽  
F. Arfeuille ◽  
C. C. Raible ◽  
E. Rozanov

Abstract. After strong volcanic eruptions stratospheric ozone changes are modulated by heterogeneous chemical reactions (HET) and dynamical perturbations related to the radiative heating in the lower stratosphere (RAD). Here, we assess the relative importance of both processes as well as the effect of the resulting ozone changes on the dynamics using ensemble simulations with the atmosphere–ocean–chemistry–climate model (AOCCM) SOCOL-MPIOM forced by eruptions with different strength. The simulations are performed under present day and preindustrial conditions to investigate changes in the response behaviour. The results show that the HET effect is only relevant under present day conditions and causes a pronounced global reduction of column ozone. These ozone changes further lead to a slight weakening of the Northern Hemisphere (NH) polar vortex during mid-winter. Independent from the climate state the RAD mechanism changes the column ozone pattern with negative anomalies in the tropics and positive anomalies in the mid-latitudes. The influence of the climate state on the RAD mechanism significantly differs in the polar latitudes, where an amplified ozone depletion during the winter months is simulated under present day conditions. This is in contrast to the preindustrial state showing a positive column ozone response also in the polar area. The dynamical response of the stratosphere is clearly dominated by the RAD mechanism showing an intensification of the NH polar vortex in winter. Still under present day conditions ozone changes due to the RAD mechanism slightly reduce the response of the polar vortex after the eruption.


2021 ◽  
Author(s):  
Zhihong Zhuo ◽  
Herman Fuglestvedt ◽  
Matthew Toohey ◽  
Michael J. Mills ◽  
Kirstin Krüger

<p>Major volcanic eruptions increase sulfate aerosols in the stratosphere. This causes a large-scale dimming effect with significant surface cooling and stratosphere warming. However, the climate impact differs for tropical and extratropical eruptions, and depends on the eruption season and height, and volcanic volatiles injections. In order to study different volcanic aerosol forcing and their climate impact, we perform simulations based on the fully coupled Community Earth System Model version 2 (CESM2) with the version 6 of the Whole Atmosphere Community Climate Model (WACCM6) with prognostic stratospheric aerosol and chemistry. In this study, explosive eruptions at 14.6 N and 63.6 N in January and July injecting 17 MT and 200 MT SO<sub>2</sub> at 24 km with and without halogens are simulated, in line with Central American Volcanic Arc and Icelandic volcanic eruptions. Simulated changes in the stratospheric sulfate and halogen burdens, and related impacts on aerosol optical depth, radiation, ozone and surface climate are analyzed. These simulated volcanic eruption cases will be compared with simulations based on the aerosol-climate model MAECHAM5-HAM.</p>


2020 ◽  
Vol 20 (11) ◽  
pp. 6821-6839 ◽  
Author(s):  
Fernando Chouza ◽  
Thierry Leblanc ◽  
John Barnes ◽  
Mark Brewer ◽  
Patrick Wang ◽  
...  

Abstract. As part of the Network for the Detection of Atmospheric Composition Change (NDACC), ground-based measurements obtained from the Jet Propulsion Laboratory (JPL) stratospheric ozone lidar and the NOAA stratospheric aerosol lidar at Mauna Loa, Hawaii, over the past 2 decades were used to investigate the impact of volcanic eruptions and pyrocumulonimbus (PyroCb) smoke plumes on the stratospheric aerosol load above Hawaii since 1999. Measurements at 355 and 532 nm conducted by these two lidars revealed a color ratio of 0.5 for background aerosols and small volcanic plumes and 0.8 for a PyroCb plume recorded on September 2017. Measurements of the Nabro plume by the JPL lidar in 2011–2012 showed a lidar ratio of (64±12.7) sr at 355 nm around the center of the plume. The new Global Space-based Stratospheric Aerosol Climatology (GloSSAC), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) Level 3 and Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III-ISS) stratospheric aerosol datasets were compared to the ground-based lidar datasets. The intercomparison revealed a generally good agreement, with vertical profiles of extinction coefficient within 50 % discrepancy between 17 and 23 km above sea level (a.s.l.) and 25 % above 23 km a.s.l. The stratospheric aerosol depth derived from all of these datasets shows good agreement, with the largest discrepancy (20 %) being observed between the new CALIOP Level 3 and the other datasets. All datasets consistently reveal a relatively quiescent period between 1999 and 2006, followed by an active period of multiple eruptions (e.g., Nabro) until early 2012. Another quiescent period, with slightly higher aerosol background, lasted until mid-2017, when a combination of extensive wildfires and multiple volcanic eruptions caused a significant increase in stratospheric aerosol loading. This loading maximized at the very end of the time period considered (fall 2019) as a result of the Raikoke eruption, the plume of which ascended to 26 km altitude in less than 3 months.


2020 ◽  
Author(s):  
Corinna Kloss ◽  
Pasquale Sellitto ◽  
Bernard Legras ◽  
Jean-Paul Vernier ◽  
Fabrice Jégou ◽  
...  

<p>Using a combination of satellite, ground-based and in-situ observations, and radiative transfer modelling, we quantify the impact of the most recent moderate volcanic eruptions (Ambae, Vanuatu in July 2018; Raikoke, Russia and Ulawun, New Guinea in June 2019) on the global stratospheric aerosol layer and climate.</p><p>For the Ambae volcano (15°S and 167°E), we use the Stratospheric Aerosol and Gas Experiment III (SAGE III), the Ozone Mapping Profiler Suite (OMPS), the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Himawari geostationary satellite observations of the aerosol plume evolution following the Ambae eruption of July 2018. It is shown that the aerosol plume of the main eruption at Ambae in July 2018 was distributed throughout the global stratosphere within the global large-scale circulation (Brewer-Dobson circulation, BDC), to both hemispheres. Ground-based LiDAR observations in Gadanki, India, as well as in-situ Printed Optical Particle Spectrometer (POPS) measurements acquired during the BATAL campaign confirm a widespread perturbation of the stratospheric aerosol layer due to this eruption. Using the UVSPEC radiative transfer model, we also estimate the radiative forcing of this global stratospheric aerosol perturbation. The climate impact is shown to be comparable to that of the well-known and studied recent moderate stratospheric eruptions from Kasatochi (USA, 2008), Sarychev (Russia, 2009) and Nabro (Eritrea, 2011). Top of the atmosphere radiative forcing values between -0.45 and -0.60 W/m<sup>2</sup>, for the Ambae eruption of July 2018, are found.</p><p>In a similar manner the dispersion of the aerosol plume of the Raikoke (48°N and 153°E) and Ulawun (5°S and 151°E) eruptions of June 2019 is analyzed. As both of those eruptions had a stratospheric impact and happened almost simultaneously, it is challenging to completely distinguish both events. Even though the eruptions occurred very recently, first results show that the aerosol plume of the Raikoke eruption resulted in an increase in aerosol extinction values, double as high as compared to that of the Ambae eruption. However, as the eruption occurred on higher latitudes, the main bulk of Raikoke aerosols was transported towards the northern higher latitude’s in the stratosphere within the BDC, as revealed by OMPS, SAGE III and a new detection algorithm for SO<sub>2</sub> and sulfate aerosol using IASI (Infrared Atmospheric Sounder Interferometer). Even though the Raikoke eruption had a larger impact on the stratospheric aerosol layer, both events (the eruptions at Raikoke and Ambae) have to be considered in stratospheric aerosol budget and climate studies.</p>


2022 ◽  
Author(s):  
Jim Haywood ◽  
Andy Jones ◽  
Ben Johnson ◽  
William McFarlane Smith

Abstract. Theoretical Stratospheric Aerosol Intervention (SAI) strategies model the deliberate injection of aerosols or their precursors into the stratosphere thereby reflecting incident sunlight back to space and counterbalancing a fraction of the warming due to increased concentrations of greenhouse gases. This cooling mechanism is known to be relatively robust through analogues from explosive volcanic eruptions which have been documented to cool the climate of the Earth. However, a practical difficulty of SAI strategies is how to deliver the injection high enough to ensure dispersal of the aerosol within the stratosphere on a global scale. Recently, it has been suggested that including a small amount of absorbing material in a dedicated 10-day intensive deployment might enable aerosols or precursor gases to be injected at significantly lower, more technologically-feasible altitudes. The material then absorbs sunlight causing a localised heating and ‘lofting’ of the particles, enabling them to penetrate into the stratosphere. Such self-lofting has recently been observed following the intensive wildfires in 2019–2020 in south east Australia, where the resulting absorbing aerosol penetrated into the stratosphere and was monitored by satellite instrumentation for many months subsequent to emission. This study uses the fully coupled UKESM1 climate model simulations performed for the Geoengineering Model Intercomparison Project (GeoMIP) and new simulations where the aerosol optical properties have been adjusted to include a moderate degree of absorption. The results indicate that partially absorbing aerosols i) reduce the cooling efficiency per unit mass of aerosol injected, ii) increase deficits in global precipitation iii) delay the recovery of the stratospheric ozone hole, iv) disrupt the Quasi Biennial Oscillation when global mean temperatures are reduced by as little as 0.1 K, v) enhance the positive phase of the wintertime North Atlantic Oscillation which is associated with floods in Northern Europe and droughts in Southern Europe. While these results are dependent upon the exact details of the injection strategies and our simulations use ten times the ratio of black carbon to sulfate that is considered in the recent intensive deployment studies, they demonstrate some of the potential pitfalls of injecting an absorbing aerosol into the stratosphere to combat the global warming problem.


2020 ◽  
Author(s):  
Fernando Chouza ◽  
Thierry Leblanc ◽  
John Barnes ◽  
Mark Brewer ◽  
Patrick Wang ◽  
...  

Abstract. As part of the Network for the Detection of Atmospheric Composition Change (NDACC), ground-based measurements obtained from the Jet Propulsion Laboratory (JPL) stratospheric ozone lidar and the NOAA stratospheric aerosol lidar at Mauna Loa, Hawaii over the past two decades were used to investigate the impact of volcanic eruptions and pyro-cumulonimbus smoke plumes on the stratospheric aerosol load above Hawaii since 1999. Measurements at 355 nm and 532 nm conducted by these two lidars revealed Ångström exponents of −1.6 for background plumes and −0.6 for a PyroCb plume recorded on September 2017. Measurements of the Nabro plume by the JPL lidar in 2011/2012 showed a lidar ratio of (64 ± 12.7) sr at 355 nm around the center of the plume. The new GloSSAC, CALIOP Level 3 and SAGE III-ISS stratospheric aerosol datasets were compared to the ground-based lidar datasets. The intercomparison revealed a generally good agreement, with vertical profiles of extinction coefficient within 50 % of discrepancy between 17 km and 23 km above sea level (ASL), and 25 % above 23 km ASL. The stratospheric aerosol depth derived from all these datasets shows good agreement, with the largest discrepancy (20 %) being observed between the new CALIOP Level 3 and the other datasets. All datasets consistently reveal a relatively quiescent period between 1999 and 2005, followed by an active period of multiple eruptions (e.g., Nabro) until early 2012. Another quiescent period, with slightly higher aerosol background, lasted until mid-2017, when a combination of extensive wildfires and multiple volcanic eruptions caused a significant increase in stratospheric aerosol loading. This loading maximized at the very end of the time period considered (fall 2019) as a result of the Raikoke eruption, the plume of which ascended to 26 km altitude in less than three months.


2021 ◽  
Author(s):  
Christina Brodowsky ◽  
Timofei Sukhodolov ◽  
Aryeh Feinberg ◽  
Michael Höpfner ◽  
Thomas Peter ◽  
...  

<p>Volcanic activity is one of the main natural climate forcings and therefore an accurate representation of volcanic aerosols in global climate models is essential. However, direct modelling of sulfur chemistry, sulfate aerosol microphysics and transport is a complex task involving many uncertainties including those related to the volcanic emission magnitude, vertical shape of the plume, and observations of atmospheric sulfur. This study aims to investigate some of these uncertainties and to analyse the performance of the aerosol-chemistry-climate model SOCOL-AERv2 for three medium-sized volcanic eruptions from Kasatochi in 2008, Sarychev in 2009 and Nabro in 2011. In particular, we investigate the impact of different estimates for the initial volcanic plume height and its SO2 content on the stratospheric aerosol burden. The influence of internal model variability and of modelled dynamics is addressed by three free-running simulations and two nudged simulations at different vertical resolutions. Comparing the modelled evolution of the stratospheric aerosol loading and its spread with the Brewer-Dobson-Circulation (BDC) to satellite measurements reveals in general a very good performance of SOCOL-AERv2 during the considered period. However, the large spread in emission estimates logically leads to significant differences in the modelled aerosol burden. This spread results from both the uncertainty in the total emitted mass of sulfur as well as its vertical distribution relative to the tropopause. An additional source of modelled uncertainty is the tropopause height, which varies among the free-running simulations. Furthermore, the validation is complicated by disagreement between different observational datasets. Nudging effects on the tropospheric clouds were found to affect the tropospheric SO2 oxidation paths and the cross-tropopause transport, leading to increased background burdens both in the troposphere and the stratosphere. This effect can be reduced by nudging only horizontal winds but not temperature. A higher vertical resolution of 90 levels (as opposed to 39 in the standard version) increases the stratospheric residence time of sulfate aerosol after low-latitude eruptions by reducing the diffusion speed out of the tropical reservoir. We conclude that the model's uncertainties can be largely defined by both its set-up as by the volcanic emission parameters.</p>


2013 ◽  
Vol 13 (11) ◽  
pp. 28869-28893 ◽  
Author(s):  
M. Rex ◽  
I. Wohltmann ◽  
T. Ridder ◽  
R. Lehmann ◽  
K. Rosenlof ◽  
...  

Abstract. Hundreds of biogenic and anthropogenic chemical species are emitted into the atmosphere. Most break down efficiently by reaction with OH and do not reach the stratosphere. Here we show the existence of pronounced minima in the tropospheric columns of ozone and OH over the West Pacific, the main source region for stratospheric air. We show that this amplifies the impact of surface emissions on the stratospheric composition. Specifically, emissions of biogenic halogenated species from natural sources and from kelp and seaweed farming can have a larger effect on stratospheric ozone depletion. Increasing anthropogenic emissions of SO2 in South East Asia or from minor volcanic eruptions can play a larger role for the stratospheric aerosol budget, a key element for explaining the recently observed decrease in global warming rates (Solomon et al., 2011).


Sign in / Sign up

Export Citation Format

Share Document