scholarly journals Assessment of regional aerosol radiative effects under the SWAAMI campaign – Part 1: Quality-enhanced estimation of columnar aerosol extinction and absorption over the Indian subcontinent

2019 ◽  
Vol 19 (18) ◽  
pp. 11865-11886 ◽  
Author(s):  
Harshavardhana Sunil Pathak ◽  
Sreedharan Krishnakumari Satheesh ◽  
Ravi Shankar Nanjundiah ◽  
Krishnaswamy Krishna Moorthy ◽  
Sivaramakrishnan Lakshmivarahan ◽  
...  

Abstract. Improving the accuracy of regional aerosol climate impact assessment calls for improvement in the accuracy of regional aerosol radiative effect (ARE) estimation. One of the most important means of achieving this is to use spatially homogeneous and temporally continuous datasets of critical aerosol properties, such as spectral aerosol optical depth (AOD) and single scattering albedo (SSA), which are the most important parameters for estimating aerosol radiative effects. However, observations do not provide the above; the space-borne observations though provide wide spatial coverage, are temporal snapshots and suffer from possible sensor degradation over extended periods. On the other hand, the ground-based measurements provide more accurate and temporally continuous data but are spatially near-point observations. Realizing the need for spatially homogeneous and temporally continuous datasets on one hand and the near non-existence of such data over the south Asian region (which is one of the regions where aerosols show large heterogeneity in most of their properties), construction of accurate gridded aerosol products by synthesizing the long-term space-borne and ground-based data has been taken up as an important objective of the South West Asian Aerosol Monsoon Interactions (SWAAMI), a joint Indo-UK field campaign, aiming at characterizing aerosol–monsoon links and their variabilities over the Indian region. In Part 1 of this two-part paper, we present spatially homogeneous gridded datasets of AOD and absorption aerosol optical depth (AAOD), generated for the first time over this region. These data products are developed by merging the highly accurate aerosol measurements from the dense networks of 44 (for AOD) and 34 (for AAOD) ground-based observatories of Aerosol Radiative Forcing over India NETwork (ARFINET) and AErosol RObotic NETwork (AERONET) spread across the Indian region, with satellite-retrieved AOD and AAOD, following statistical assimilation schemes. The satellite data used for AOD assimilation include AODs retrieved from MODerate Imaging Spectroradiometer (MODIS) and Multiangle Imaging SpectroRadiometer (MISR) over the same domain. For AAOD, the ground-based black carbon (BC) mass concentration measurements from the network of 34 ARFINET observatories and satellite-based (Kalpana-1, INSAT-3A) infrared (IR) radiance measurements are blended with gridded AAODs (500 nm, monthly mean) derived from Ozone Monitoring Instrument (OMI)-retrieved AAODs (at 354 and 388 nm). The details of the assimilation methods and the gridded datasets generated are presented in this paper. The merged gridded AOD and AAOD products thus generated are validated against the data from independent ground-based observatories, which were not used for the assimilation process but are representative of different subregions of the complex domain. This validation exercise revealed that the independent ground-based measurements are better confirmed by merged datasets than the respective satellite products. As ensured by assimilation techniques employed, the uncertainties in merged AODs and AAODs are significantly less than those in corresponding satellite products. These merged products also all exhibit important large-scale spatial and temporal features which are already reported for this region. Nonetheless, the merged AODs and AAODs are significantly different in magnitude from the respective satellite products. On the background of above-mentioned quality enhancements demonstrated by merged products, we have employed them for deriving the columnar SSA and analysed its spatiotemporal characteristics. The columnar SSA thus derived has demonstrated distinct seasonal variation over various representative subregions of the study domain. The uncertainties in the derived SSA are observed to be substantially less than those in OMI SSA. On the backdrop of these benefits, the merged datasets are employed for the estimation of regional aerosol radiative effects (direct), the results of which would be presented in a companion paper, Part 2 of this two-part paper.

2019 ◽  
Author(s):  
Harshavardhana Sunil Pathak ◽  
Sreedharan Krishnakumari Satheesh ◽  
Ravi Shankar Nanjundiah ◽  
Krishnaswamy Krishna Moorthy ◽  
Sivaramakrishnan Lakshmivarahan ◽  
...  

Abstract. Improving the accuracy of regional aerosol climate impact assessment calls for an improvement in the accuracy of regional aerosol radiative effects (ARE) estimation. One of the most important means of achieving this is to use spatially homogeneous and temporally continuous datasets of critical aerosol properties, such as spectral aerosol optical depth (AOD) and single scattering albedo (SSA), which are the most important parameters for estimating aerosol radiative effects. However, observations do not provide the above; the space-borne observations though provide wide spatial coverage, are temporally snapshots and suffer from possible sensor degradation over extended periods. On the other hand, the ground-based measurements provide more accurate and temporally continuous data, but are spatially near-point observations. Realizing the need for spatially homogeneous and temporally continuous datasets on one hand and the near-non-existence of such data over the south Asian region (which is one of the regions where aerosols show large heterogeneity in most of their properties), construction of accurate gridded aerosol products by synthesizing the long-term space-borne and ground-based data, has been taken up as an important objective of the South West Asian Aerosol Monsoon Interactions (SWAAMI), a joint Indo-UK field campaign, aiming at characterizing aerosol-monsoon links and their variabilities over the Indian region. In the Part-1 of this two-part paper, we present spatially homogeneous gridded datasets of AOD and absorption AOD (AAOD), generated for the first time over this region. These data products are developed by merging the highly accurate aerosol measurements from the dense networks of 44 (for AOD) and 34 (for AAOD) ground-based observatories of Aerosol Radiative Forcing NETwork (ARFINET) and AErosol RObotic NETwork (AERONET) spread across the Indian region, with satellite-retrieved AOD and AAOD, following statistical assimilation schemes. The satellite data used for AOD assimilation includes AODs retrieved from MODerate Imaging Spectroradiometer (MODIS) and Multiangle Imaging SpectroRadiometer (MISR) over the same domain. For AAOD, the ground-based Black Carbon (BC) mass concentration measurements from the network of 34 ARFINET observatories and satellite-based (Kalpana-1, INSAT-3A) infrared (IR) radiance measurements, are blended with gridded AAODs (500 nm, monthly mean) derived from Ozone Monitoring Instrument (OMI)-retrieved AAODs (at 354 nm and 388 nm). The details of the assimilation methods and the gridded datasets generated are presented in this paper. The merged, gridded AOD and AAOD products thus generated, are validated against the data from independent ground-based observatories, which were not used for the assimilation process, but are representative of different subregions of the complex domain. This validation exercise revealed that the independent ground-based measurements are better confirmed by merged datasets than the respective satellite products. As ensured by assimilation techniques employed, the uncertainties in merged AODs and AAODs are significantly less than those in corresponding satellite products. These merged products also exhibit all important, large-scale spatial and temporal features which are already reported for this region. Nonetheless, the merged AODs and AAODs are significantly different in magnitude, from the respective satellite products. On the background of above mentioned quality enhancements demonstrated by merged products, we have employed them for deriving the columnar SSA and analysed its spatio-temporal characteristics. The columnar SSA thus derived has demonstrated distinct seasonal variation, over various representative subregions of the study domain. The uncertainties in the derived SSA are observed to be substantially less than those in OMI SSA. On the backdrop of these benefits, the merged datasets are employed for the estimation of regional aerosol radiative effects (direct), the results of which would be presented in a companion paper; Part-2 of this two-part paper.


2014 ◽  
Vol 14 (7) ◽  
pp. 8779-8818 ◽  
Author(s):  
D. Mateos ◽  
M. Antón ◽  
C. Toledano ◽  
V. E. Cachorro ◽  
L. Alados-Arboledas ◽  
...  

Abstract. A better understanding of the aerosol radiative properties is a crucial challenge for climate change studies. This study aims to provide a complete characterization of aerosol radiative effects in different spectral ranges within the shortwave (SW) solar spectrum. For this purpose, long-term datasets of aerosol properties from six AERONET stations located in the Iberian Peninsula (Southwestern Europe) are analyzed in term of climatology characterization and trends. Aerosol information is used as input to the libRadtran model in order to determine the aerosol radiative effect at the surface in the ultraviolet (AREUV), visible (AREVIS), near-infrared (ARENIR), and the entire SW range (ARESW) under cloud-free conditions. Over the whole Iberian Peninsula, aerosol radiative effects in the different spectral ranges are: −1.1 < AREUV < −0.7 W m−2, −5.7 < AREVIS < −3.8 W m−2, −2.8 < ARENIR < −1.7 W m−2, and −9.5 < ARESW < −6.1 W m−2. The four variables showed positive statistically significant trends between 2004 and 2012, e.g., ARESW increased +3.6 W m−2 per decade. This fact is linked to the decrease in the aerosol load, which presents a trend of −0.04 per unit of aerosol optical depth at 500 nm per decade, hence a reduction of aerosol effect on solar radiation at the surface is seen. Monthly means of ARE show a seasonal pattern with larger values in spring and summer. The aerosol forcing efficiency (AFE), ARE per unit of aerosol optical depth, is also evaluated in the four spectral ranges. AFE exhibits a dependence on single scattering albedo and a weaker one on Ångström exponent. AFE is larger (in absolute value) for small and absorbing particles. The contributions of the UV, VIS, and NIR ranges to the SW efficiency vary with the aerosol types. Aerosol size determines the fractions of AFEVIS/AFESW and AFENIR/AFESW. VIS range is the dominant region for all types, although non-absorbing large particles cause a more equal contribution of VIS and NIR intervals. The AFEUV / AFESW ratio shows a higher contribution for absorbing fine particles.


2009 ◽  
Vol 66 (4) ◽  
pp. 1033-1040 ◽  
Author(s):  
O. E. García ◽  
A. M. Díaz ◽  
F. J. Expósito ◽  
J. P. Díaz ◽  
A. Redondas ◽  
...  

Abstract The influence of mineral dust on ultraviolet energy transfer is studied for two different mineralogical origins. The aerosol radiative forcing ΔF and the forcing efficiency at the surface ΔFeff in the range 290–325 nm were estimated in ground-based stations affected by the Saharan and Asian deserts during the dusty seasons. UVB solar measurements were taken from the World Ozone and Ultraviolet Data Center (WOUDC) for four Asian stations (2000–04) and from the Santa Cruz Observatory, Canary Islands (2002–03), under Gobi and Sahara Desert influences, respectively. The Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth at 550 nm was used to characterize the aerosol load τ, whereas the aerosol index provided by the Total Ozone Mapping Spectrometer (TOMS) sensor was employed to identify the mineral dust events. The ΔF is strongly affected by the aerosol load, the values found being comparable in both regions during the dusty seasons. Under those conditions, ΔF values as large as −1.29 ± 0.53 W m−2 (τ550 = 0.48 ± 0.24) and −1.43 ± 0.38 W m−2 (τ550 = 0.54 ± 0.26) were reached under Saharan and Asian dust conditions, respectively. Nevertheless, significant differences have been observed in the aerosol radiative forcing per unit of aerosol optical depth in the slant path, τS. The maximum ΔFeff values associated with dust influences were −1.55 ± 0.20 W m−2 τS550−1 for the Saharan region and −0.95 ± 0.11 W m−2 τS550−1 in the Asian area. These results may be used as a benchmark database for establishing aerosol corrections in UV satellite products or in global climate model estimations.


2021 ◽  
Vol 21 (8) ◽  
pp. 5965-5982
Author(s):  
Mingxu Liu ◽  
Hitoshi Matsui

Abstract. Anthropogenic emissions in China play an important role in altering the global radiation budget. Over the past decade, the strong clean-air policies in China have resulted in substantial reductions of anthropogenic emissions of sulfur dioxide (SO2) and primary particulate matter, and air quality in China has consequently improved. However, the resultant aerosol radiative forcings have been poorly understood. In this study, we used an advanced global climate model integrated with the latest localized emission inventory to quantify the aerosol radiative forcings by the changes of anthropogenic emissions in China between 2008 and 2016. By comparing with multiple observation datasets, our simulations reproduced the considerable reductions of sulfate and black carbon (BC) mass loadings reasonably well over eastern China (the key region subject to stringent emission controls) during the period and accordingly showed a clear decline in both aerosol optical depth and absorption aerosol optical depth. The results revealed a regional annual mean positive direct radiative forcing (DRF) of +0.29 W m−2 at the top of the atmosphere (TOA) due to the reduction of SO2 emissions. This positive aerosol radiative forcing was comprised of diminished sulfate scattering (+0.58 W m−2), enhanced nitrate radiative effects (−0.29 W m−2), and could be completely offset by the concurrent reduction of BC emissions that induced a negative BC DRF of −0.33 W m−2. Despite the small net aerosol DRF (−0.05 W m−2) at the TOA, aerosol–radiation interactions could explain the surface brightening in China over the past decade. The overall reductions in aerosol burdens and associated optical effects mainly from BC and sulfate enhanced the regional annual mean downward solar radiation flux at the surface by +1.0 W m−2 between 2008 and 2016. The enhancement was in general agreement with a long-term observational record of surface energy fluxes in China. We also estimated that aerosol effects on cloud radiative forcings may have played a dominant role in the net aerosol radiative forcings at the TOA in China and over the northern Pacific Ocean during the study period. This study will facilitate more informed assessment of climate responses to projected emissions in the future as well as to sudden changes in human activities (e.g., the COVID-19 lockdown).


2010 ◽  
Vol 10 (22) ◽  
pp. 11209-11221 ◽  
Author(s):  
G. P. Gobbi ◽  
F. Angelini ◽  
P. Bonasoni ◽  
G. P. Verza ◽  
A. Marinoni ◽  
...  

Abstract. In spite of being located at the heart of the highest mountain range in the world, the Himalayan Nepal Climate Observatory (5079 m a.s.l.) at the Ev-K2-CNR Pyramid is shown to be affected by the advection of pollution aerosols from the populated regions of southern Nepal and the Indo-Gangetic plains. Such an impact is observed along most of the period April 2006–March 2007 addressed here, with a minimum in the monsoon season. Backtrajectory-analysis indicates long-range transport episodes occurring in this year to originate mainly in the west Asian deserts. At this high altitude site, the measured aerosol optical depth is observed to be about one order of magnitude lower than the one measured at Ghandi College (60 m a.s.l.), in the Indo-Gangetic basin. As for Ghandi College, and in agreement with the in situ ground observations at the Pyramid, the fine mode aerosol optical depth maximizes during winter and minimizes in the monsoon season. Conversely, total optical depth maximizes during the monsoon due to the occurrence of elevated, coarse particle layers. Possible origins of these particles are wind erosion from the surrounding peaks and hydrated/cloud-processed aerosols. Assessment of the aerosol radiative forcing is then expected to be hampered by the presence of these high altitude particle layers, which impede an effective, continuous measurement of anthropogenic aerosol radiative properties from sky radiance inversions and/or ground measurements alone. Even though the retrieved absorption coefficients of pollution aerosols were rather large (single scattering albedo of the order of 0.6–0.9 were observed in the month of April 2006), the corresponding low optical depths (~0.03 at 500 nm) are expected to limit the relevant radiative forcing. Still, the high specific forcing of this aerosol and its capability of altering snow surface albedo provide good reasons for continuous monitoring.


2015 ◽  
Vol 15 (9) ◽  
pp. 13457-13513 ◽  
Author(s):  
S. T. Turnock ◽  
D. V. Spracklen ◽  
K. S. Carslaw ◽  
G. W. Mann ◽  
M. T. Woodhouse ◽  
...  

Abstract. Substantial changes in anthropogenic aerosols and precursor gas emissions have occurred over recent decades due to the implementation of air pollution control legislation and economic growth. The response of atmospheric aerosols to these changes and the impact on climate are poorly constrained, particularly in studies using detailed aerosol chemistry climate models. Here we compare the HadGEM3-UKCA coupled chemistry-climate model for the period 1960 to 2009 against extensive ground based observations of sulfate aerosol mass (1978–2009), total suspended particle matter (SPM, 1978–1998), PM10 (1997–2009), aerosol optical depth (AOD, 2000–2009) and surface solar radiation (SSR, 1960–2009) over Europe. The model underestimates observed sulfate aerosol mass (normalised mean bias factor (NMBF) = −0.4), SPM (NMBF = −0.9), PM10 (NMBF = −0.2) and aerosol optical depth (AOD, NMBF = −0.01) but slightly overpredicts SSR (NMBF = 0.02). Trends in aerosol over the observational period are well simulated by the model, with observed (simulated) changes in sulfate of −68% (−78%), SPM of −42% (−20%), PM10 of −9% (−8%) and AOD of −11% (−14%). Discrepancies in the magnitude of simulated aerosol mass do not affect the ability of the model to reproduce the observed SSR trends. The positive change in observed European SSR (5%) during 1990–2009 ("brightening") is better reproduced by the model when aerosol radiative effects (ARE) are included (3%), compared to simulations where ARE are excluded (0.2%). The simulated top-of-the-atmosphere aerosol radiative forcing over Europe under all-sky conditions increased by 3 W m−2 during the period 1970–2009 in response to changes in anthropogenic emissions and aerosol concentrations.


Sign in / Sign up

Export Citation Format

Share Document