scholarly journals Evaluation of the effect of regional joint-control measures on changing photochemical transformation: a comprehensive study of the optimization scenario analysis

2019 ◽  
Vol 19 (14) ◽  
pp. 9037-9060 ◽  
Author(s):  
Li Li ◽  
Shuhui Zhu ◽  
Jingyu An ◽  
Min Zhou ◽  
Hongli Wang ◽  
...  

Abstract. Heavy haze usually occurs in winter in eastern China. To control the severe air pollution during the season, comprehensive regional joint-control strategies were implemented throughout a campaign. To evaluate the effectiveness of these strategies and to provide some insights into strengthening the regional joint-control mechanism, the influence of control measures on levels of air pollution was estimated with an integrated measurement-emission-modeling method. To determine the influence of meteorological conditions, and the control measures on the air quality, in a comprehensive study, the 2nd World Internet Conference was held during 16–18 December 2015 in Jiaxing City, Zhejiang province, in the Yangtze River Delta (YRD) region. We first analyzed the air quality changes during four meteorological regimes and then compared the air pollutant concentrations before, during, and after the regulation under static meteorological conditions. Next, we conducted modeling scenarios to quantify the effects caused due to the air pollution control measures. We found that total emissions of SO2, NOx, PM2.5, and volatile organic compounds (VOCs) in Jiaxing were reduced by 56 %, 58 %, 64 %, and 80 %, respectively, while total emission reductions of SO2, NOx, PM2.5, and VOCs over the YRD region are estimated to be 10 %, 9 %, 10 %, and 11 %, respectively. Modeling results suggest that during the campaign from 8 to 18 December, PM2.5 daily average concentrations decreased by 10 µg m−3 with an average decrease of 14.6 %. Our implemented optimization analysis compared with previous studies also reveals that local emission reductions play a key role in air quality improvement, although it shall be supplemented by regional linkage. In terms of regional joint control, implementing pollution channel control 48 h before the event is of most benefit in getting similar results. Therefore, it is recommended that a synergistic emission reduction plan between adjacent areas with local pollution emission reductions as the core part should be established and strengthened, and emission reduction plans for different types of pollution through a stronger regional linkage should be reserved.

2019 ◽  
Author(s):  
Li Li ◽  
Shuhui Zhu ◽  
Jingyu An ◽  
Min Zhou ◽  
Hongli Wang ◽  
...  

Abstract. Heavy haze usually occurs in winter in eastern China. To control the severe air pollution during the season, comprehensive regional joint-control strategies were implemented throughout a campaign. To evaluate the effectiveness of these strategies and to provide some insight into strengthening the joint-control mechanism, the influence of control measures on levels of air pollution were estimated. To determine the influence of meteorological conditions, and the control measures on the air quality, in a comprehensive study, the 2nd World Internet Conference was held during December 16~18, 2015 in Jiaxing City, Zhejiang Province in the Yangtze River Delta (YRD) region. We first analyzed the air quality changes during four meteorological regimes; and then compared the air pollutant concentrations during days with stable meteorological conditions. Next, we did modeling scenarios to quantify the effects caused due to the air pollution control measures. We found that total emissions of SO2, NOx, PM2.5 and VOCs in Jiaxing were reduced by 56 %, 58 %, 64 % and 80 %, respectively; while total emission reductions of SO2, NOx, PM2.5 and VOCs over the YRD region are estimated to be 10 %, 9 %, 10 % and 11 %, respectively. Modelling results suggest that the regional controls (including Jiaxing and surrounding area) reduced PM2.5 levels in Jiaxing between 5.5 %–16.5 % (9.9 % on average), while local control measures contributed 4.5 %–14.4 %, with an average of 8.8 %. Our implemented optimization analysis compared with previous studies also reveal that local emission reductions play a key role in air quality improvement, although it shall be supplemented by regional linkage. In terms of regional joint control, to implement pollution channel control 48 hours before the event is of most benefit in getting similar results. Therefore, it is recommended that a synergistic emission reduction plan between adjacent areas with local pollution emission reductions as the core part should be established and strengthened, and emission reduction plans for different types of pollution through a stronger regional linkage should be reserved.


2021 ◽  
Vol 13 (19) ◽  
pp. 10968
Author(s):  
Juihui Chen ◽  
Xiaoqiong Feng ◽  
Yonghui Zhu ◽  
Ling Huang ◽  
Min He ◽  
...  

To continuously improve air quality, after implementation of the “Clean Air Action Plan, 2013–2017” (CAAP), the “Three-year Action Plan to Fight Air Pollution” (TYP) was further conducted from 2018 to 2020. However, the effectiveness of the TYP remains unclear in one of the major city-clusters of China, the Sichuan Basin. In this study, the bottom-up method was used to quantify the emission reduction during TYP based on the emissions inventory in Sichuan Basin in 2017 and the air pollution control measures adopted from 2018 to 2020 in each city. The reduction of PM2.5 concentration and the avoided premature deaths due to implementation of air pollution control measures were assessed by using an integrated meteorology and air quality modeling system and a concentration-response algorithm. Emissions of SO2, NOx, PM2.5, and VOCs in the Sichuan Basin have been reduced by 42.6, 105.2, 40.2, and 136.6 Gg, respectively. The control of non-electricity industry contributed significantly to the emission reduction of all pollutants, accounting for 26–49%. In addition, the control of mobile sources contributes the most to NOx reductions, accounting for 57%. The results illustrate that the focus of air pollution control in Sichuan Basin is still industrial sources. We also found that the emission reduction of NOx, PM2.5, and VOCs in Chengdu is significantly higher than that of other cities, which were about 3.4~15.4 times, 2.2~40.1 times, and 4.3~24.4 times that of other cities, respectively. In Sichuan Basin, the average reduction rate of PM2.5 concentration due to air pollution control measures was 5% on average, with the highest contributions from industry, mobile source, and dust emission control. The decrease rate in each city ranges between 1~10%, and the decreasing ratios in Dazhou (10%), Chengdu (8%), and Zigong (7%) are relatively higher. The number of premature deaths avoided due to air pollution control measures in Sichuan Basin is estimated to be 22,934. Chengdu and Dazhou have benefitted most from the air pollution control measures, with 6043 and 2713 premature deaths avoided, respectively. Our results indicate that the implementation of TYP has achieved remarkable environmental and health benefits.


Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 253
Author(s):  
Haitao Zhou ◽  
Yueming Yu ◽  
Xuan Gu ◽  
Yun Wu ◽  
Mei Wang ◽  
...  

Air pollution shows a generally decreasing trend from the north to the south in China since 2013 (GB3095-2012, the current standard for monitoring). However, an opposite observation was recorded in 2017, especially in winter. In this study, we collected monitoring data of six air pollutants in 2016 and 2017, from a northern city (Beijing) and a southern city (Nanjing) for comparison. As air pollution was highly dependent upon meteorological conditions, we further analyzed their relationships to explain this abnormal phenomenon. Seasonal averaged PM2.5, PM10, SO2, CO, and NO2 were negatively correlated with wind scale (WS) while 8-h O3 exhibited an opposite relationship. Relative humidity (RH) has opposite effects on the concentrations of different pollutants in Beijing and Nanjing. The 8-h O3 showed the closest positive correlation with temperature (T), which is due to its formation mechanism. In Beijing, decreased RH, together with more wind from northwest in winter, resulted in an improved air quality in 2017. In Nanjing, WS, RH, T, and wind direction fluctuated within a narrow range in each season, leading to relatively stable pollutant concentrations. These results suggest that meteorological conditions are important factors to evaluate the air quality and implement control measures.


2019 ◽  
Vol 19 (9) ◽  
pp. 6125-6146 ◽  
Author(s):  
Jing Cheng ◽  
Jingping Su ◽  
Tong Cui ◽  
Xiang Li ◽  
Xin Dong ◽  
...  

Abstract. In 2013, China's government published the Air Pollution Prevention and Control Action Plan (APPCAP) with a specific target for Beijing, which aims to reduce annual mean PM2.5 concentrations in Beijing to 60 µg m−3 in 2017. During 2013–2017, the air quality in Beijing was significantly improved following the implementation of various emission control measures locally and regionally, with the annual mean PM2.5 concentration decreasing from 89.5 µg m−3 in 2013 to 58 µg m−3 in 2017. As meteorological conditions were more favourable to the reduction of air pollution in 2017 than in 2013 and 2016, the real effectiveness of emission control measures on the improvement of air quality in Beijing has frequently been questioned. In this work, by combining a detailed bottom-up emission inventory over Beijing, the MEIC regional emission inventory and the WRF-CMAQ (Weather Research and Forecasting Model and Community Multiscale Air Quality) model, we attribute the improvement in Beijing's PM2.5 air quality in 2017 (compared to 2013 and 2016) to the following factors: changes in meteorological conditions, reduction of emissions from surrounding regions, and seven specific categories of local emission control measures in Beijing. We collect and summarize data related to 32 detailed control measures implemented during 2013–2017, quantify the emission reductions associated with each measure using the bottom-up local emission inventory in 2013, aggregate the measures into seven categories, and conduct a series of CMAQ simulations to quantify the contribution of different factors to the PM2.5 changes. We found that, although changes in meteorological conditions partly explain the improved PM2.5 air quality in Beijing in 2017 compared to 2013 (3.8 µg m−3, 12.1 % of total), the rapid decrease in PM2.5 concentrations in Beijing during 2013–2017 was dominated by local (20.6 µg m−3, 65.4 %) and regional (7.1 µg m−3, 22.5 %) emission reductions. The seven categories of emission control measures, i.e. coal-fired boiler control, clean fuels in the residential sector, optimize industrial structure, fugitive dust control, vehicle emission control, improved end-of-pipe control, and integrated treatment of VOCs, reduced the PM2.5 concentrations in Beijing by 5.9, 5.3, 3.2, 2.3, 1.9, 1.8, and 0.2 µg m−3, respectively, during 2013–2017. We also found that changes in meteorological conditions could explain roughly 30 % of total reduction in PM2.5 concentration during 2016–2017 with more prominent contribution in winter months (November and December). If the meteorological conditions in 2017 had remained the same as those in 2016, the annual mean PM2.5 concentrations would have increased from 58 to 63 µg m−3, exceeding the target established in the APPCAP. Despite the remarkable impacts from meteorological condition changes, local and regional emission reductions still played major roles in the PM2.5 decrease in Beijing during 2016–2017, and clean fuels in the residential sector, coal-fired boiler control, and optimize industrial structure were the three most effective local measures (contributing reductions of 2.1, 1.9, and 1.5 µg m−3, respectively). Our study confirms the effectiveness of clean air actions in Beijing and its surrounding regions and reveals that a new generation of control measures and strengthened regional joint emission control measures should be implemented for continued air quality improvement in Beijing because the major emitting sources have changed since the implementation of the clean air actions.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1072
Author(s):  
Akiyoshi Ito ◽  
Shinji Wakamatsu ◽  
Tazuko Morikawa ◽  
Shinji Kobayashi

The aim of this paper is to obtain information that will contribute to measures and research needed to further improve the air quality in Japan. The trends and characteristics of air pollutant concentrations, especially PM2.5, ozone, and related substances, over the past 30 years, are analyzed, and the relationships between concentrations and emissions are discussed quantitatively. We found that PM2.5 mass concentrations have decreased, with the largest reduction in elemental carbon (EC) as the PM2.5 component. The concentrations of organic carbon (OC) have not changed significantly compared to other components, suggesting that especially VOC emissions as precursors need to be reduced. In addition, the analysis of the differences in PM2.5 concentrations between the ambient and the roadside showed that further research on non-exhaust particles is needed. For NOx and SO2, there is a linear relationship between domestic anthropogenic emissions and atmospheric concentrations, indicating that emission control measures are directly effective in the reduction in concentrations. Also, recent air pollution episodes and the effect of reduced economic activity, as a consequence of COVID-19, on air pollution concentrations are summarized.


2021 ◽  
Author(s):  
Ronny Badeke ◽  
Volker Matthias ◽  
Markus Quante ◽  
Ronny Petrik ◽  
Jan Arndt ◽  
...  

<p>Corona lockdown measures caused unprecedented emission reductions in many parts of world. However, this does not linearly translate into improved air quality, since weather phenomena like precipitation, wind and solar radiation also show a significant impact on pollutant concentration patterns. The aim of this study is to disentangle effects of emission reduction and meteorology on the air quality in Central Europe during the first major lockdown from March to June 2020. For this purpose, the Community Multiscale Air Quality Modeling System (CMAQ) was used with updated emission data for the year 2020, including time profiles for sectors and countries that approximate the lockdown emission reductions. The contributions of street traffic, air traffic, ship traffic, residential heating and industry to NO<sub>2</sub>, O<sub>3</sub> and PM<sub>2.5</sub> concentrations were investigated. Meteorological data was derived from the regional COSMO model in CLimate Mode (COSMO-CLM). Additional city scale measurements were used to account for exceptional weather conditions as well as emission reduction effects at hotspots like traffic stations. Therefore, selected air pollutant and meteorological measurement data in the cities of Hamburg, Liége and Marseille are compared against the statistical trend of 2015 to 2019.</p>


2016 ◽  
Vol 97 (4) ◽  
pp. 553-559 ◽  
Author(s):  
Zhanshan Wang ◽  
Yunting Li ◽  
Tian Chen ◽  
Dawei Zhang ◽  
Lingjun Li ◽  
...  

Abstract The Beijing government has made great effort to solve the air pollution problem in recent years. In this paper, the major air pollution control measures and the air quality improvement from 2008 to 2014 in Beijing were represented. With the implementation of a series of unconventional and high–air pollutant reduction measures in Beijing and the surrounding area, good air quality during both the 2008 Olympic Games and the 2014 Asia–Pacific Economic Cooperation (APEC) conference was guaranteed. Notably, a new scientific approach was applied to formulate air pollution control policy during the APEC conference. In addition to the established measures, two periods of enhanced and targeted reduction measures were implemented according to the forecast in advance. Finally, suggestions for improving air quality in Beijing were offered on the basis of the monitoring results and analyses during the APEC conference.


2013 ◽  
Vol 13 (11) ◽  
pp. 5813-5830 ◽  
Author(s):  
A. J. Ding ◽  
C. B. Fu ◽  
X. Q. Yang ◽  
J. N. Sun ◽  
L. F. Zheng ◽  
...  

Abstract. This work presents an overview of 1 yr measurements of ozone (O3) and fine particular matter (PM2.5) and related trace gases at a recently developed regional background site, the Station for Observing Regional Processes of the Earth System (SORPES), in the western part of the Yangtze River Delta (YRD) in eastern China. Ozone and PM2.5 showed strong seasonal cycles but with contrast patterns: O3 reached a maximum in warm seasons but PM2.5 in cold seasons. Correlation analysis suggests a VOC-sensitive regime for O3 chemistry and a formation of secondary aerosols under conditions of high O3 in summer. Compared with the National Ambient Air Quality Standards in China, our measurements report 15 days of O3 exceedance and 148 days of PM2.5 exceedance during the 1 yr period, suggesting a severe air pollution situation in this region. Case studies for typical O3 and PM2.5 episodes demonstrated that these episodes were generally associated with an air mass transport pathway over the mid-YRD, i.e., along the Nanjing–Shanghai axis with its city clusters, and showed that synoptic weather played an important role in air pollution, especially for O3. Agricultural burning activities caused high PM2.5 and O3 pollution during harvest seasons, especially in June. A calculation of potential source contributions based on Lagrangian dispersion simulations suggests that emissions from the YRD contributed to over 70% of the O3 precursor CO, with a majority from the mid-YRD. North-YRD and the North China Plain are the main contributors to PM2.5 pollution in this region. This work shows an important environmental impact from industrialization and urbanization in the YRD region, and suggests an urgent need for improving air quality in these areas through collaborative control measures among different administrative regions.


2020 ◽  
Vol 20 (13) ◽  
pp. 7667-7682 ◽  
Author(s):  
Xiaoyan Wang ◽  
Renhe Zhang

Abstract. The Chinese government has made many efforts to mitigate fine particulate matter pollution in recent years by taking strict measures on air pollutant reduction, which has generated the nationwide improvements in air quality since 2013. However, under the stringent air pollution controls, how the wintertime PM2.5 concentration (i.e., the mass concentration of atmospheric particles with diameters less than 2.5 µm) varies and how much the meteorological conditions contribute to the interannual variations in PM2.5 concentrations are still unclear, and these very important for the local government to assess the emission reduction of the previous year and adjust mitigation strategies for the next year. The effects of atmospheric circulation on the interannual variation in wintertime PM2.5 concentrations over the Beijing–Tianjin–Hebei (BTH) region in the period of 2013–2018 are evaluated in this study. Generally, the transport of clean and dry air masses and an unstable boundary layer in combination with the effective near-surface horizontal divergence or pumping action at the top of the boundary layer benefits the horizontal or vertical diffusion of surface air pollutants. Instead, the co-occurrence of a stable boundary layer, frequent air stagnation, positive water vapor advection and deep near-surface horizontal convergence exacerbate the wintertime air pollution. Favorable circulation conditions lasting for 2–4 d are beneficial for the diffusion of air pollutants, and 3–7 d of unfavorable circulation events exacerbates the accumulation of air pollutants. The occurrence frequency of favorable circulation events is consistent with the interannual variation in seasonal mean PM2.5 concentrations. There is better diffusion ability in the winters of 2014 and 2017 than in other years. A 59.9 % observed decrease in PM2.5 concentrations in 2017 over the BTH region could be attributed to the improvement in atmospheric diffusion conditions. It is essential to exclude the contribution of meteorological conditions to the variation in interannual air pollutants when making a quantitative evaluation of emission reduction measurements.


2018 ◽  
Vol 7 (3.23) ◽  
pp. 40
Author(s):  
Muhammad Ismail Jaffar ◽  
Hazrul Abdul Hamid ◽  
Riduan Yunus ◽  
Ahmad Fauzi Raffee

High event of air pollution would give adverse effect to human health and cause of instability towards environment. In order to overcome these issues, the statistical air pollution modelling is an important tool to predict the return period of high event on air pollution in future. This tool also will be useful to help the related government agencies for providing a better air quality management and it can provide significantly when air quality data been analyze appropriately. In fitting air pollutant data, statistical distribution of gamma, lognormal and Weibull distribution is widely used compared to others distributions model. In addition, the aims of this overview study are to identify which distributions is the most used for predicting the air pollution concentration thus, the accuracy for prediction future air quality is the important aspect to give the best prediction. The comprehensive study need to be conducted in statistical distribution of air pollution for fitting pollutant data. By using others statistical distributions model as main suggested in this paper. 


Sign in / Sign up

Export Citation Format

Share Document