scholarly journals Fitting Statistical Distribution on Air Pollution: an Overview

2018 ◽  
Vol 7 (3.23) ◽  
pp. 40
Author(s):  
Muhammad Ismail Jaffar ◽  
Hazrul Abdul Hamid ◽  
Riduan Yunus ◽  
Ahmad Fauzi Raffee

High event of air pollution would give adverse effect to human health and cause of instability towards environment. In order to overcome these issues, the statistical air pollution modelling is an important tool to predict the return period of high event on air pollution in future. This tool also will be useful to help the related government agencies for providing a better air quality management and it can provide significantly when air quality data been analyze appropriately. In fitting air pollutant data, statistical distribution of gamma, lognormal and Weibull distribution is widely used compared to others distributions model. In addition, the aims of this overview study are to identify which distributions is the most used for predicting the air pollution concentration thus, the accuracy for prediction future air quality is the important aspect to give the best prediction. The comprehensive study need to be conducted in statistical distribution of air pollution for fitting pollutant data. By using others statistical distributions model as main suggested in this paper. 

2021 ◽  
Author(s):  
Wojciech Nazar ◽  
Katarzyna Plata-Nazar

Abstract Background Decreased air quality is connected to a higher number of hospital admissions and an increase in daily mortality rates. Thus, Poles’ behavioural response to sometimes elevated air pollution levels is vital. The aim of this study was to carry out analysis of changes in air-pollution related information seeking behaviour in response to nationwide reported air quality in Poland. Methods Google Trends Search Volume Index data was used to investigate Poles’ interest in air pollution-related keywords. PM10 and PM2.5 concentrations measured across Poland between 2016 and 2019 were collected from the Chief Inspectorate of Environmental Protection databases. Pearson Product-Moment Correlation and the R2 correlation coefficient of determination were used to measure spatial and seasonal correlations between reported air pollution levels and the popularity of search queries. Results The highest PM10 and PM2.5 concentrations were observed in southern voivodeships and during the winter season. Similar trends were observed for Poles’ interest in air-pollution related keywords. All R2 coefficient of determination values were > 0.5 and all correlations were statistically significant. Conclusion Poland’s air quality does not meet the World Health Organisation guidelines. Also, the air quality is lower in southern Poland and during the winter season. It appears that Poles are aware of this issue and search for daily air quality data in their location. Greater interest in air quality data in Poland strongly correlates with both higher regional and higher seasonal air pollution levels.


2020 ◽  
Vol 171 ◽  
pp. 02009
Author(s):  
Rosanny Sihombing ◽  
Sabo Kwada Sini ◽  
Matthias Fitzky

As the population of people migrating to cities keeps increasing, concerns have been raised about air quality in cities and how it impacts everyday life. Thus, it is important to demonstrate ways of avoiding polluted areas. The approach described in this paper is intended to draw attention to polluted areas and help pedestrians and cyclists to achieve the lowest possible level of air pollution when planning daily routes. We utilise real-time air quality data which is obtained from monitoring stations across the world. The data consist of the geolocation of monitoring stations as well as index numbers to scale the air quality level in every corresponding monitoring stations. When the air quality level is considered having a moderate health concern for people with respiratory disease, such as asthma, an alternative route that avoid air pollution will be calculated so that pedestrians and cyclists can be informed. The implementation can visualize air quality level in several areas in 3D map as well as informs health-aware route for pedestrian and cyclist. It automatically adjusts the observed air quality areas based on the availability of monitoring stations. The proposed approach results in a prototype of a health-aware 3D navigation system for pedestrian and cyclist.


2019 ◽  
Vol 19 (14) ◽  
pp. 9037-9060 ◽  
Author(s):  
Li Li ◽  
Shuhui Zhu ◽  
Jingyu An ◽  
Min Zhou ◽  
Hongli Wang ◽  
...  

Abstract. Heavy haze usually occurs in winter in eastern China. To control the severe air pollution during the season, comprehensive regional joint-control strategies were implemented throughout a campaign. To evaluate the effectiveness of these strategies and to provide some insights into strengthening the regional joint-control mechanism, the influence of control measures on levels of air pollution was estimated with an integrated measurement-emission-modeling method. To determine the influence of meteorological conditions, and the control measures on the air quality, in a comprehensive study, the 2nd World Internet Conference was held during 16–18 December 2015 in Jiaxing City, Zhejiang province, in the Yangtze River Delta (YRD) region. We first analyzed the air quality changes during four meteorological regimes and then compared the air pollutant concentrations before, during, and after the regulation under static meteorological conditions. Next, we conducted modeling scenarios to quantify the effects caused due to the air pollution control measures. We found that total emissions of SO2, NOx, PM2.5, and volatile organic compounds (VOCs) in Jiaxing were reduced by 56 %, 58 %, 64 %, and 80 %, respectively, while total emission reductions of SO2, NOx, PM2.5, and VOCs over the YRD region are estimated to be 10 %, 9 %, 10 %, and 11 %, respectively. Modeling results suggest that during the campaign from 8 to 18 December, PM2.5 daily average concentrations decreased by 10 µg m−3 with an average decrease of 14.6 %. Our implemented optimization analysis compared with previous studies also reveals that local emission reductions play a key role in air quality improvement, although it shall be supplemented by regional linkage. In terms of regional joint control, implementing pollution channel control 48 h before the event is of most benefit in getting similar results. Therefore, it is recommended that a synergistic emission reduction plan between adjacent areas with local pollution emission reductions as the core part should be established and strengthened, and emission reduction plans for different types of pollution through a stronger regional linkage should be reserved.


2021 ◽  
Vol 5 (1) ◽  
pp. 017-025
Author(s):  
Karuppasamy Manikanda Bharath ◽  
Natesan Usha ◽  
Periyasamy Balamadeswaran ◽  
S Srinivasalu

The lockdown, implemented in response to the COVID-19 epidemic, restricted the operation of various sectors in the country and its highlights a good environmental outcome. Thus, a comparison of air pollutants in India before and after the imposed lockdown indicated an overall improvement air quality across major Indian cities. This was established by utilizing the Central Pollution Control Board’s database of air quality monitoring station statistics, such as air quality patterns. During the COVID-19 epidemic, India’s pre-to-post nationwide lockdown was examined. The air quality data was collected from 30-12-2019 to 28-04-2020 and synthesized using 231 Automatic air quality monitoring stations in a major Indian metropolis. Specifically, air pollutant concentrations, temperature, and relative humidity variation during COVID-19 pandemic pre-to-post lockdown variation in India were monitored. As an outcome, several cities around the country have reported improved air quality. Generally, the air quality, on a categorical scale was found to be ‘Good’. However, a few cities from the North-eastern part of India were categorized as ‘Moderate/Satisfactory’. Overall, the particulate matters reduction was in around 60% and other gaseous pollutants was in 40% reduction was observed during the lockdown period. The results of this study include an analysis of air quality data derived from continuous air quality monitoring stations from the pre-lockdown to post-lockdown period. Air quality in India improved following the national lockdown, the interpretation of trends for PM 2.5, PM 10, SO2, NO2, and the Air Quality Index has been provided in studies for major cities across India, including Delhi, Gurugram, Noida, Mumbai, Kolkata, Bengaluru, Patna, and others.


2020 ◽  
Author(s):  
Gurusamy Kutralam-Muniasamy ◽  
Fermín Pérez-Guevara ◽  
Priyadarsi D. Roy ◽  
I. Elizalde-Martínez ◽  
V.C. Shruti

Abstract Mexico City is the second most populated city in Latin America, and it went through two partial lockdowns between April 1 and May 31, 2020 for reducing the COVID-19 propagation. The present study assessed air quality and its association with human mortality rates during the lockdown by estimating changes observed in air pollutants (CO, NO2, O3, SO2, PM10 and PM2.5) between the lockdown (April 1 - May 31) and pre-lockdown (January 1 – March 31) periods, as well as by comparing the air quality data of lockdown period with the same interval of previous five-years (2015-2019). Concentrations of NO2 (-29%), SO2 (-55%) and PM10 (-11%) declined and the contents of CO (+1.1%), PM2.5 (+19%) and O3 (+63%) increased during the lockdown compared to the pre-lockdown period. This study also estimated that NO2, SO2, CO, PM10 and PM2.5 reduced by 19-36%, and O3 enhanced by 14% compared to the average of 2015-2019. Reduction in traffic as well as less emission from vehicle exhausts led to remarkable decline in NO2, SO2 and PM10. The significant positive associations of PM2.5, CO and O3 with the numbers of COVID-19 infections and deaths, however, underscored the necessity to enforce air pollution regulations to protect human health in one of the important cities of the northern hemisphere.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1352
Author(s):  
Rosa Maria Cerón Breton ◽  
Julia Céron Breton ◽  
María de la Luz Espinosa Fuentes ◽  
Jonathan Kahl ◽  
Alberto Antonio Espinosa Guzman ◽  
...  

Short-term effects of air pollution on the number of hospital admissions in eight municipalities of the Metropolitan Area of Monterrey, Mexico, were assessed from 2016 to 2019 using a time-series approach. Air quality data were obtained from the Atmospheric Monitoring System of Nuevo Leon State (SIMA) which belongs to SINAICA (National System of Air Quality Information), providing validated data for this study. Epidemiological data were provided by SINAIS (National System of Health Information), considering admission by all causes and specific causes, gender and different age groups. Guadalupe had the highest mean concentrations for SO2, CO and O3; whereas Santa Catarina showed the highest NO2 concentrations. Escobedo and Garcia registered the highest levels for PM10. Only PM10 and O3 exceeded the permissible maximum values established in Mexican official standards. A basal Poisson model was constructed to assess the association between daily morbidity and air pollutants, from this, a second scenario in which daily mean concentrations of air pollutant criteria increase by 10% was considered. Most of pollutants and municipalities studied showed a great number of associations between an increase of 10% in their current concentrations and morbidity, especially for the age group between 5 and 59 years during cold months, excepting ozone which showed a strongest correlation during summer. Results were comparable to those reported by other authors around the world, however, in spite of relative risk index (RRI) values being low, they are of public concern. This study demonstrated that considering the nature of their activities, economically active population and students, they could be more vulnerable to air pollution effects. Results found in this study can be used by decision makers to develop public policies focused on protecting this specific group of the population in metropolitan areas in Mexico.


Author(s):  
U. Isikdag ◽  
K. Sahin

<p><strong>Abstract.</strong> Many countries where the industrial development and production rates are high face many side effects of low air quality and air pollution. There is an evident correlation between the topographic and climatic properties of a location and the air pollution and air quality on that location. As the variation of air quality is dependent on location, air quality information should be acquired, utilised, stored and presented in form of Geo-Information. On the other hand, as this information is related with the health concerns of public, the information should be available publicly, and needs to be presented through an easily accessible medium and through a commonly used interface. Efficient storage of time-varying air quality information when combined with an efficient mechanism of 3D web-based visualisation would help very much in dissemination of air quality information to public. This research is focused on web-based 3D visualisation of time-varying air quality data. A web based interactive system is developed to visualise pollutant levels that were acquired as hourly intervals from more than 100 stations in Turkey between years 2008 and 2017. The research also concentrated on visualisation of geospatial high volume data. In the system, visualisation can be achieved on-demand by querying an air pollutant information database of 10.330.629 records and a city object database with more than 700.000 records. The paper elaborates on the details of this research. Following a background on air quality, air quality models, and Geo-Information visualisation, the system architecture and functionality is presented. The paper concludes with results of usability tests of the system.</p>


Sign in / Sign up

Export Citation Format

Share Document