scholarly journals Ice-nucleating particle concentrations of the past: insights from a 600-year-old Greenland ice core

2020 ◽  
Vol 20 (21) ◽  
pp. 12459-12482 ◽  
Author(s):  
Jann Schrod ◽  
Dominik Kleinhenz ◽  
Maria Hörhold ◽  
Tobias Erhardt ◽  
Sarah Richter ◽  
...  

Abstract. Ice-nucleating particles (INPs) affect the microphysics in cloud and precipitation processes. Hence, they modulate the radiative properties of clouds. However, atmospheric INP concentrations of the past are basically unknown. Here, we present INP measurements from an ice core in Greenland, which dates back to the year 1370. In total 135 samples were analyzed with the FRIDGE droplet freezing assay in the temperature range from −14 to −35 ∘C. The sampling frequency was set to 1 in 10 years from 1370 to 1960. From 1960 to 1990 the frequency was increased to one sample per year. Additionally, a few special events were probed, including volcanic episodes. The typical time coverage of a sample was on the order of a few months. Historical atmospheric INP concentrations were estimated with a conversion factor, which depends on the snow accumulation rate of the ice core, particle dry deposition velocity, and wet scavenging ratio. Typical atmospheric INP concentrations were on the order of 0.1 L−1 at −25 ∘C. The INP variability was found to be about 1–2 orders of magnitude. Yet, the short-term variability from samples over a seasonal cycle was considerably lower. INP concentrations were significantly correlated to some chemical tracers derived from continuous-flow analysis (CFA) and ion chromatography (IC) over a broad range of nucleation temperatures. The highest correlation coefficients were found for the particle concentration (spherical diameter dp > 1.2 µm). The correlation is higher for a time period of seasonal samples, where INP concentrations follow a clear annual pattern, highlighting the importance of the annual dust input in Greenland from East Asian deserts during spring. Scanning electron microscopy (SEM) analysis of selected samples found mineral dust to be the dominant particle fraction, verifying their significance as INPs. Overall, the concentrations compare reasonably well to present-day INP concentrations, albeit they are on the lower side. However, we found that the INP concentration at medium supercooled temperatures differed before and after 1960. Average INP concentrations at −23, −24, −25, −26, and −28 ∘C were significantly higher (and more variable) in the modern-day period, which could indicate a potential anthropogenic impact, e.g., from land-use change.

2020 ◽  
Author(s):  
Jann Schrod ◽  
Dominik Kleinhenz ◽  
Maria Hörhold ◽  
Tobias Erhardt ◽  
Sarah Richter ◽  
...  

Abstract. Ice nucleating particles (INPs) affect the microphysics in cloud and precipitation processes. Hence, they modulate the radiative properties of clouds. However, atmospheric INP concentrations of the past are basically unknown. Here, we present INP measurements from an ice core in Greenland, which dates back to the year 1370. In total 135 samples were analyzed with the FRIDGE droplet freezing assay in the temperature range from −14 °C to −35 °C. The sampling frequency was set to 1 in 10 years from 1370 to 1960. From 1960 to 1990 the frequency was increased to 1 sample per year. Additionally, a number of special events were probed, including volcanic episodes. The typical time coverage of a sample was on the order of a few months. Historical atmospheric INP concentrations were estimated with a conversion factor, which depends on the snow accumulation rate of the ice core, particle dry deposition velocity and the wet scavenging ratio. Typical atmospheric INP concentrations were on the order of 0.1 L−1 at −25 °C. The INP variability was found to be about 1–2 orders of magnitude. Yet, the short-term variability from samples over a seasonal cycle was considerably lower. INP concentrations were significantly correlated to chemical tracers derived from continuous flow analysis (CFA) and ion chromatography (IC) over a broad range of nucleation temperatures. The highest correlation coefficients were found for the particle concentration (dp > 1.2 μm). The correlation is higher for the seasonal samples, where INP concentrations follow a clear annual pattern, highlighting the importance of the annual dust input in Greenland from East Asian deserts during spring. Scanning electron microscopy (SEM) of single particles retrieved from selected samples found particles of soil origin to be the dominant fraction, verifying the significance of mineral dust particles as INPs. Overall, the concentrations compare reasonably well to present day INP concentrations, albeit they are on the lower side. However, we found that the INP concentration at medium supercooled temperatures differed before and after 1960. Average INP concentrations at −23 °C, −24 °C, −25 °C, −26 °C and −28 °C were significantly higher (and more variable) in the modern day period, which could indicate a potential anthropogenic impact or some post-coring contamination of the topmost, very porous firn.


2017 ◽  
Author(s):  
Mai Winstrup ◽  
Paul Vallelonga ◽  
Helle A. Kjær ◽  
Tyler J. Fudge ◽  
James E. Lee ◽  
...  

Abstract. We present a 2700-year annually resolved timescale for the Roosevelt Island Climate Evolution (RICE) ice core, and reconstruct a past snow accumulation history for the coastal sector of the Ross Ice Shelf in West Antarctica. The timescale was constructed by identifying annual layers in multiple ice-core impurity records, employing both manual and automated counting approaches, and constitutes the top part of the Roosevelt Island Ice Core Chronology 2017 (RICE17). The maritime setting of Roosevelt Island results in high sulfate influx from sea salts and marine biogenic emissions, which prohibits a routine detection of volcanic eruptions in the ice-core records. This led to the use of non-traditional chronological techniques for validating the timescale: RICE was synchronized to the WAIS Divide ice core, on the WD2014 timescale, using volcanic attribution based on direct measurements of ice-core acidity, as well as records of globally-synchronous, centennial-scale variability in atmospheric methane concentrations. The RICE accumulation history suggests stable values of 0.25 m water equivalent (w.e.) per year until around 1260 CE. Uncertainties in the correction for ice flow thinning of annual layers with depth do not allow a firm conclusion about long-term trends in accumulation rates during this early period but from 1260 CE to the present, accumulation rate trends have been consistently negative. The decrease in accumulation rates has been increasingly rapid over the last centuries, with the decrease since 1950 CE being more than 7 times greater than the average over the last 300 years. The current accumulation rate of 0.22 ± 0.06 m w.e. yr−1 (average since 1950 CE, ±1σ) is 1.49 standard deviations (86th percentile) below the mean of 50-year average accumulation rates observed over the last 2700 years.


1988 ◽  
Vol 10 ◽  
pp. 178-182 ◽  
Author(s):  
Lonnie G. Thompson ◽  
Wu Xiaoling ◽  
Ellen Mosley-Thompson ◽  
Xie Zichu

Results from the first glaciological investigation of the Dunde ice cap demonstrate that a long, highly temporally resolvable climatic ice-core record is preserved in this ice cap. Measurements of stratigraphy, microparticle concentrations, liquid conductivity, and oxygen-isotope ratios from three snow pits in 1984 suggest that the annual accumulation is approximately 200 mm (water equivalent). Measurement of microparticle concentrations and conductivities of pit samples collected in 1986 confirm the existence of annual dust layers and an annual accumulation rate of ∼200 mm/year over the past 5 years. Bore-hole temperatures of –5.4°C at 30 m indicate that the ice cap is polar. Mono-pulse radar depth determinations yield an average thickness of 140 m, which (coupled with the smooth bedrock topography and the current accumulation rate) suggest that the Dunde ice cap should contain at least a 3000 year climatic record. A drilling program to recover that record from this subtropical location is planned for 1987.


2018 ◽  
Vol 14 (2) ◽  
pp. 193-214 ◽  
Author(s):  
Nancy A. N. Bertler ◽  
Howard Conway ◽  
Dorthe Dahl-Jensen ◽  
Daniel B. Emanuelsson ◽  
Mai Winstrup ◽  
...  

Abstract. High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually dated ice core record from the eastern Ross Sea, named the Roosevelt Island Climate Evolution (RICE) ice core. Comparison of this record with climate reanalysis data for the 1979–2012 interval shows that RICE reliably captures temperature and snow precipitation variability in the region. Trends over the past 2700 years in RICE are shown to be distinct from those in West Antarctica and the western Ross Sea captured by other ice cores. For most of this interval, the eastern Ross Sea was warming (or showing isotopic enrichment for other reasons), with increased snow accumulation and perhaps decreased sea ice concentration. However, West Antarctica cooled and the western Ross Sea showed no significant isotope temperature trend. This pattern here is referred to as the Ross Sea Dipole. Notably, during the Little Ice Age, West Antarctica and the western Ross Sea experienced colder than average temperatures, while the eastern Ross Sea underwent a period of warming or increased isotopic enrichment. From the 17th century onwards, this dipole relationship changed. All three regions show current warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea but increasing in the western Ross Sea. We interpret this pattern as reflecting an increase in sea ice in the eastern Ross Sea with perhaps the establishment of a modern Roosevelt Island polynya as a local moisture source for RICE.


2021 ◽  
Author(s):  
Helle Astrid Kjær ◽  
Lisa Lolk Hauge ◽  
Marius Simonsen ◽  
Zurine Yoldi ◽  
Iben Koldtoft ◽  
...  

Abstract. Polar researchers spend enormous costs transporting snow and ice samples to home laboratories for simple analyses in order to constrain annual layer thicknesses and identifying accumulation rates of specific sites. It is well known that depositional noise, incurred from wind drifts, seasonally-biased deposition, melt layers and more, can influence individual snow and firn records and that multiple cores are required to produce statistically robust time series. Thus at many sites core samples are measured in the field for densification, but the annual accumulation and the content of chemical impurities are often represented by just one core to reduce transport costs. We have developed a portable Light weight in Situ Analysis (LISA) box for ice, firn and snow analysis capable of constraining annual layers through the continuous flow analysis of melt water conductivity and peroxide under field conditions. The box can run using a small gasoline-generator and weighs less than 50 kg. The LISA box was tested under field conditions at the deep ice core drilling site EastGRIP in Northern Greenland. Analysis of the top 2 metres of snow from 7 sites in Northern Greenland (Figure 1) allowed the reconstruction of regional snow accumulation patterns for the period 2015–2019.


2021 ◽  
Author(s):  
Zhuang Jiang ◽  
Becky Alexander ◽  
Joel Savarino ◽  
Joseph Erbland ◽  
Lei Geng

Abstract. Atmospheric information embedded in ice-core nitrate is disturbed by post-depositional processing. Here we used a layered snow photochemical column model to explicitly investigate the effects of post-depositional processing on snow nitrate and its isotopes (δ15N and Δ17O) at Summit, Greenland where post-depositional processing was thought to be minimal due to the high snow accumulation rate. We found significant redistribution of nitrate in the upper snowpack through photolysis and up to 21 % of nitrate was lost and/or redistributed after deposition. The model indicates post-depositional processing can reproduce much of the observed δ15N seasonality, while seasonal variations in δ15N of primary nitrate is needed to reconcile the timing of the lowest seasonal δ15N. In contrast, post-depositional processing can only induce less than 2.1 ‰ seasonal Δ17O change, much smaller than the observation (9 ‰) that is ultimately determined by seasonal differences in nitrate formation pathway. Despite significant redistribution of snow nitrate in the photic zone and the associated effects on δ15N seasonality, the net annual effect of post-depositional processing is relatively small, suggesting preservation of atmospheric signals at the annual scale under the present Summit conditions. But at longer timescales when large changes in snow accumulation rate occurs this post-depositional processing could become a major driver of the δ15N variability in ice core nitrate.


1982 ◽  
Vol 3 ◽  
pp. 354
Author(s):  
Michael M. Herron

Snow and ice-core samples from a number of sites in Antarctica and Greenland have been analyzed for the major anions Cl−, NO3 −, and SO4 2- by ion chromatography. Reproducibility on adjacent core or pit samples is ±10% at the 95% confidence level. Chloride is of marine origin except following some major volcanic eruptions. Chloride concentrations decrease exponentially with increasing site elevation with a scale height of about 1.5 km. For sites of comparable elevation, Antarctic Cl− concentrations are only slightly higher than in Greenland. Sulfate concentrations, corrected for the marine aerosol contribution, show an inverse dependence on snow accumulation rate. For sites of comparable accumulation rate, Greenland concentrations exceed those in Antarctica by a factor of 2 to 3. Nitrate concentrations also decrease with increasing accumulation rate and for comparable sites Greenland NO3 − concentrations are a factor of 2 higher than in Antarctica. There is no evidence of solar modulation or supernova perturbation of Greenland NO3 − concentrations. The Byrd deep core is shown to have distinct seasonal variations in Cl− and SO4 2- that may be used for dating. In addition, the Byrd core contains volcanic signals similar to those found in Greenland. Recent Greenland snow contains about 4 times as much SO4 2- and 2 to 3 times as much NO3 − as is found in older ice due to modern fossil fuel combustion.


1988 ◽  
Vol 10 ◽  
pp. 43-47 ◽  
Author(s):  
W. Graf ◽  
O. Reinwarth ◽  
H. Moser ◽  
W. Stichler

A 100 m ice core from the Ronne Ice Shelf, drilled during the 1983-84 field season, was dated by isotopic stratigraphy, using the well-known seasonal variation in the 18O content in firn and ice; the layers at a depth of 89 m are probably 400 years old. Layer thicknesses deduced from the 18O profile indicate short-term variations of the snow-accumulation rate over the last 400 years. The area of deposition of the material recovered with the core is estimated by a two-dimensional flow model and by the 18O content of the core, which decreases from –27.5‰ in the upper part of the core to –32.0‰ at 89 m depth.


2019 ◽  
Vol 15 (2) ◽  
pp. 751-779 ◽  
Author(s):  
Mai Winstrup ◽  
Paul Vallelonga ◽  
Helle A. Kjær ◽  
Tyler J. Fudge ◽  
James E. Lee ◽  
...  

Abstract. We present a 2700-year annually resolved chronology and snow accumulation history for the Roosevelt Island Climate Evolution (RICE) ice core, Ross Ice Shelf, West Antarctica. The core adds information on past accumulation changes in an otherwise poorly constrained sector of Antarctica. The timescale was constructed by identifying annual cycles in high-resolution impurity records, and it constitutes the top part of the Roosevelt Island Ice Core Chronology 2017 (RICE17). Validation by volcanic and methane matching to the WD2014 chronology from the WAIS Divide ice core shows that the two timescales are in excellent agreement. In a companion paper, gas matching to WAIS Divide is used to extend the timescale for the deeper part of the core in which annual layers cannot be identified. Based on the annually resolved timescale, we produced a record of past snow accumulation at Roosevelt Island. The accumulation history shows that Roosevelt Island experienced slightly increasing accumulation rates between 700 BCE and 1300 CE, with an average accumulation of 0.25±0.02 m water equivalent (w.e.) per year. Since 1300 CE, trends in the accumulation rate have been consistently negative, with an acceleration in the rate of decline after the mid-17th century. The current accumulation rate at Roosevelt Island is 0.210±0.002 m w.e. yr−1 (average since 1965 CE, ±2σ), and it is rapidly declining with a trend corresponding to 0.8 mm yr−2. The decline observed since the mid-1960s is 8 times faster than the long-term decreasing trend taking place over the previous centuries, with decadal mean accumulation rates consistently being below average. Previous research has shown a strong link between Roosevelt Island accumulation rates and the location and intensity of the Amundsen Sea Low, which has a significant impact on regional sea-ice extent. The decrease in accumulation rates at Roosevelt Island may therefore be explained in terms of a recent strengthening of the ASL and the expansion of sea ice in the eastern Ross Sea. The start of the rapid decrease in RICE accumulation rates observed in 1965 CE may thus mark the onset of significant increases in regional sea-ice extent.


2015 ◽  
Vol 11 (9) ◽  
pp. 1127-1137 ◽  
Author(s):  
A. Svensson ◽  
S. Fujita ◽  
M. Bigler ◽  
M. Braun ◽  
R. Dallmayr ◽  
...  

Abstract. Whereas ice cores from high-accumulation sites in coastal Antarctica clearly demonstrate annual layering, it is debated whether a seasonal signal is also preserved in ice cores from lower-accumulation sites further inland and particularly on the East Antarctic Plateau. In this study, we examine 5 m of early Holocene ice from the Dome Fuji (DF) ice core at a high temporal resolution by continuous flow analysis. The ice was continuously analysed for concentrations of dust, sodium, ammonium, liquid conductivity, and water isotopic composition. Furthermore, a dielectric profiling was performed on the solid ice. In most of the analysed ice, the multi-parameter impurity data set appears to resolve the seasonal variability although the identification of annual layers is not always unambiguous. The study thus provides information on the snow accumulation process in central East Antarctica. A layer counting based on the same principles as those previously applied to the NGRIP (North Greenland Ice core Project) and the Antarctic EPICA (European Project for Ice Coring in Antarctica) Dronning Maud Land (EDML) ice cores leads to a mean annual layer thickness for the DF ice of 3.0 ± 0.3 cm that compares well to existing estimates. The measured DF section is linked to the EDML ice core through a characteristic pattern of three significant acidity peaks that are present in both cores. The corresponding section of the EDML ice core has recently been dated by annual layer counting and the number of years identified independently in the two cores agree within error estimates. We therefore conclude that, to first order, the annual signal is preserved in this section of the DF core. This case study demonstrates the feasibility of determining annually deposited strata on the central East Antarctic Plateau. It also opens the possibility of resolving annual layers in the Eemian section of Antarctic ice cores where the accumulation is estimated to have been greater than in the Holocene.


Sign in / Sign up

Export Citation Format

Share Document