scholarly journals Ambient air quality in the Kathmandu Valley, Nepal, during the pre-monsoon: concentrations and sources of particulate matter and trace gases

2020 ◽  
Vol 20 (5) ◽  
pp. 2927-2951 ◽  
Author(s):  
Md. Robiul Islam ◽  
Thilina Jayarathne ◽  
Isobel J. Simpson ◽  
Benjamin Werden ◽  
John Maben ◽  
...  

Abstract. The Kathmandu Valley in Nepal is a bowl-shaped urban basin that experiences severe air pollution that poses health risks to its 3.5 million inhabitants. As part of the Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE), ambient air quality in the Kathmandu Valley was investigated from 11 to 24 April 2015, during the pre-monsoon season. Ambient concentrations of fine and coarse particulate matter (PM2.5 and PM10, respectively), online PM1, inorganic trace gases (NH3, HNO3, SO2, and HCl), and carbon-containing gases (CO2, CO, CH4, and 93 non-methane volatile organic compounds; NMVOCs) were quantified at a semi-urban location near the center of the valley. Concentrations and ratios of NMVOC indicated origins primarily from poorly maintained vehicle emissions, biomass burning, and solvent/gasoline evaporation. During those 2 weeks, daily average PM2.5 concentrations ranged from 30 to 207 µg m−3, which exceeded the World Health Organization 24 h guideline by factors of 1.2 to 8.3. On average, the non-water mass of PM2.5 was composed of organic matter (48 %), elemental carbon (13 %), sulfate (16 %), nitrate (4 %), ammonium (9 %), chloride (2 %), calcium (1 %), magnesium (0.05 %), and potassium (1 %). Large diurnal variability in temperature and relative humidity drove corresponding variability in aerosol liquid water content, the gas–aerosol phase partitioning of NH3, HNO3, and HCl, and aerosol solution pH. The observed levels of gas-phase halogens suggest that multiphase halogen-radical chemistry involving both Cl and Br impacted regional air quality. To gain insight into the origins of organic carbon (OC), molecular markers for primary and secondary sources were quantified. Levoglucosan (averaging 1230±1154 ng m−3), 1,3,5-triphenylbenzene (0.8±0.6 ng m−3), cholesterol (2.9±6.6 ng m−3), stigmastanol (1.0 ±0.8 ng m−3), and cis-pinonic acid (4.5±1.9 ng m−3) indicate contributions from biomass burning, garbage burning, food cooking, cow dung burning, and monoterpene secondary organic aerosol, respectively. Drawing on source profiles developed in NAMaSTE, chemical mass balance (CMB) source apportionment modeling was used to estimate contributions to OC from major primary sources including garbage burning (18±5 %), biomass burning (17±10 %) inclusive of open burning and biomass-fueled cooking stoves, and internal-combustion (gasoline and diesel) engines (18±9 %). Model sensitivity tests with newly developed source profiles indicated contributions from biomass burning within a factor of 2 of previous estimates but greater contributions from garbage burning (up to three times), indicating large potential impacts of garbage burning on regional air quality and the need for further evaluation of this source. Contributions of secondary organic carbon (SOC) to PM2.5 OC included those originating from anthropogenic precursors such as naphthalene (10±4 %) and methylnaphthalene (0.3±0.1 %) and biogenic precursors for monoterpenes (0.13±0.07 %) and sesquiterpenes (5±2 %). An average of 25 % of the PM2.5 OC was unapportioned, indicating the presence of additional sources (e.g., evaporative and/or industrial emissions such as brick kilns, food cooking, and other types of SOC) and/or underestimation of the contributions from the identified source types. The source apportionment results indicate that anthropogenic combustion sources (including biomass burning, garbage burning, and fossil fuel combustion) were the greatest contributors to PM2.5 and, as such, should be considered primary targets for controlling ambient PM pollution.

2019 ◽  
Author(s):  
Md. Robiul Islam ◽  
Thilina Jayarathne ◽  
Isobel J. Simpson ◽  
Benjamin Werden ◽  
John Maben ◽  
...  

Abstract. The Kathmandu Valley in Nepal is a bowl-shaped urban basin that experiences severe air pollution that poses health risks to its 3.5 million inhabitants. As part of the Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE), ambient air quality in the Kathmandu Valley was investigated from 11 to 24 April 2015, during the pre-monsoon season. Ambient concentrations of fine and coarse particulate matter (PM2.5 and PM10, respectively), online PM1, inorganic trace gases (NH3, HNO3, SO2, and HCl), and carbon-containing gases (CO2, CO, CH4, and 85 non-methane volatile organic compounds; NMVOC) were quantified at a semi-urban location near the center of the valley. Concentrations and ratios of NMVOC indicated that origins primarily from poorly-maintained vehicle emissions, biomass burning, and solvent/gasoline evaporation. During those two weeks, daily average PM2.5 concentrations ranged from 30 to 207 µg m−3, which exceeded the World Health Organization 24 hour guideline by factors of 1.2 to 8.3. On average, the non-water mass of PM2.5 was composed of organic matter (48 %), elemental carbon (13 %), sulfate (16 %), nitrate (4 %), ammonium (9 %), chloride (2 %), calcium (1 %), magnesium (0.05 %), and potassium (1 %). Large diurnal variability in temperature and relative humidity drove corresponding variability in aerosol liquid water content, the gas-aerosol phase partitioning of NH3, HNO3, and HCl, and aerosol solution pH. The observed levels of gas-phase halogens suggest that multiphase halogen-radical chemistry involving both Cl and Br impacted regional air quality. To gain insight into the origins of organic carbon (OC), molecular markers for primary and secondary sources were quantified. Levoglucosan (1230 ± 1153 ng m−3), 1,3,5-triphenylbenzene (0.8 ±0.5 ng m−3), cholesterol (3.0 ± 6.7 ng m−3), stigmastanol (1.4 ± 6.7 ng m−3), and cis-pinonic acid (4.5 ± 0.6 ng m−3) indicate contributions from biomass burning, garbage burning, food cooking, cow-dung burning, and monoterpene secondary organic aerosol, respectively. Drawing on source profiles developed in NAMaSTE, chemical mass balance (CMB) source apportionment modeling was used to estimate contributions to OC from major primary sources including garbage burning (18 ± 5 %), biomass burning (17 ± 10 %) inclusive of open burning and biomass-fueled cooking stoves, and internal-combustion (gasoline and diesel) engines (18 ± 9 %). Model sensitivity tests with newly-developed source profiles indicated contributions from biomass burning within a factor of two of previous estimates, but relatively greater contributions from garbage burning (up to three times), indicating large potential impacts of garbage burning on regional air quality and the need for further evaluation of this source. Contributions of secondary organic carbon (SOC) to PM2.5 OC included those originating from anthropogenic precursors for naphthalene (10 ± 4 %) and methylnaphthalene (0.3 ± 0.1 %) and biogenic precursors for monoterpenes (0.13 ± 0.07 %) and sesquiterpenes (5 ± 2 %). An average of 25 % of the PM2.5 OC was unapportioned, indicating the presence of additional sources (e.g., evaporative and/or industrial emissions such as brick kilns, food cooking, and other types of SOC) or underestimation of the contributions from the identified source types. The source apportionment results indicate that anthropogenic combustion sources (including biomass burning, garbage burning, and fossil-fuel combustion) were the greatest contributors to PM2.5 and, as such, should be considered primary targets for controlling ambient PM pollution.


2015 ◽  
Vol 15 (1) ◽  
pp. 363-373 ◽  
Author(s):  
B. Aouizerats ◽  
G. R. van der Werf ◽  
R. Balasubramanian ◽  
R. Betha

Abstract. Smoke from biomass and peat burning has a notable impact on ambient air quality and climate in the Southeast Asia (SEA) region. We modeled a large fire-induced haze episode in 2006 stemming mostly from Indonesia using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). We focused on the evolution of the fire plume composition and its interaction with the urbanized area of the city state of Singapore, and on comparisons of modeled and measured aerosol and carbon monoxide (CO) concentrations. Two simulations were run with WRF-Chem using the complex volatility basis set (VBS) scheme to reproduce primary and secondary aerosol evolution and concentration. The first simulation referred to as WRF-FIRE included anthropogenic, biogenic and biomass burning emissions from the Global Fire Emissions Database (GFED3) while the second simulation referred to as WRF-NOFIRE was run without emissions from biomass burning. To test model performance, we used three independent data sets for comparison including airborne measurements of particulate matter (PM) with a diameter of 10 μm or less (PM10) in Singapore, CO measurements in Sumatra, and aerosol optical depth (AOD) column observations from four satellite-based sensors. We found reasonable agreement between the model runs and both ground-based measurements of CO and PM10. The comparison with AOD was less favorable and indicated the model underestimated AOD, although the degree of mismatch varied between different satellite data sets. During our study period, forest and peat fires in Sumatra were the main cause of enhanced aerosol concentrations from regional transport over Singapore. Analysis of the biomass burning plume showed high concentrations of primary organic aerosols (POA) with values up to 600 μg m−3 over the fire locations. The concentration of POA remained quite stable within the plume between the main burning region and Singapore while the secondary organic aerosol (SOA) concentration slightly increased. However, the absolute concentrations of SOA (up to 20 μg m−3) were much lower than those from POA, indicating a minor role of SOA in these biomass burning plumes. Our results show that about 21% of the total mass loading of ambient PM10 during the July–October study period in Singapore was due to biomass and peat burning in Sumatra, but this contribution increased during high burning periods. In total, our model results indicated that during 35 days aerosol concentrations in Singapore were above the threshold of 50 μg m−3 day−1 indicating poor air quality. During 17 days this was due to fires, based on the difference between the simulations with and without fires. Local pollution in combination with recirculation of air masses was probably the main cause of poor air quality during the other 18 days, although fires from Sumatra and probably also from Kalimantan (Indonesian part of the island of Borneo) added to the enhanced PM10 concentrations. The model versus measurement comparisons highlighted that for our study period and region the GFED3 biomass burning aerosol emissions were more in line with observations than found in other studies. This indicates that care should be taken when using AOD to constrain emissions or estimate ground-level air quality. This study also shows the need for relatively high resolution modeling to accurately reproduce the advection of air masses necessary to quantify the impacts and feedbacks on regional air quality.


Author(s):  
Durdana Rais Hashmi ◽  
Akhtar Shareef

The present study examines the variation of ambient aerosol (PM10) concentrations in Karachi, city. Samples were collected from ten different locations, representative of urban background, residential, traffic and industrial areas from 2007 to 2011. At each location, PM10 was measured continuously from 08:00 am to 06:00 pm at local time. The maximum 10 h average particulate matter (PM10) mass concentrations were found at Tibet Centre (440.1mg/m3) and minimum at PCSIR Campus (21.7mg/m3) during 2008. A rising trend during 2008 may be due to the civil works for bridges and extension of roads at different locations in Karachi. The results also suggest that urban traffic and industrial areas appeared to have higher PM10 concentration than residential and background areas.


Author(s):  
Reeta Kori ◽  
Alok Saxena ◽  
Harish Wankhade ◽  
Asad Baig ◽  
Ankita Kulshreshtha ◽  
...  

A study has been conducted to assess the ambient air quality status of Dewas industrial area of Madhya Pradesh, India. Total nine locations were selected in Dewas industrial area for ambient air quality monitoring. The eleven pollutants mainly particulate matter less than 10 µ size (PM10), particulate matter less than 2.5 µ size (PM2.5), nitrogen dioxide (NO2), sulphur dioxide (SO2), ozone (O3), ammonia (NH3), benzene (C6H6), benzo (a) Pyrene (BaP) – particulate phase, lead (Pb), Arsenic (As) and Nickel (Ni) were monitored during different four quarters from April 2019 to March 2020. The study revealed that average concentration of gaseous pollutants viz, NO2, SO2, O3, NH3, C6H6 in ambient air were well within standard limits at all selected locations, however concentration of particulate matter (PM10, PM2.5) and heavy metals (Pb & Ni) except As level were found exceeding the National Ambient Air Quality Standards (NAAQS) 2009, India at few monitoring locations. Benzo (a) Pyrene (BaP) –particulate phase in ambient air was not detected during this study. Ambient air Quality Index was found to be moderate (115.56-198.36) at six locations and satisfactory (17.60-94.94) at three locations in Dewas industrial area. Overall ambient Air Quality Index of Dewas industrial area was observed, satisfactory to moderate during this study w.r.t. Air Quality Index. KEY WORDS: Industrial Area, Ambient Air, Air Pollutants, Air Quality Index


Author(s):  
Ertan Kara ◽  
Hasan Göksel Özdilek ◽  
Emine Erman Kara ◽  
Fatih Balcı ◽  
Burcu Mestav

Background: We aimed to provide information for health practitioners and other related people about the association between ambient air quality and adverse health outcomes in the general population of Nigde, a central Turkish city, within the context of current health data epidemiological evidence. Methods: The present study highlights the connection between health problems and time series of particulate matter (PM10) and sulphur dioxide (SO2) in Nigde, Turkey between 2011 and 2017. Significant morbidity is linked to ambient air pollution, resulting in a significant economic cost to society. Results: We found that the required funds to treat cancers and chronic obstructive pulmonary disease triggered by ambient air pollution in Nigde, exceed 9 million US dollars per year, even when only the city center is taken into account. Conclusion: As Turkish cities grow and urban population density increases, air pollution issues need to be given priority in order to protect the health of the public and support sustainable development for future generations. It is recommended that particulate matter concentration in this urban center should be significantly reduced to minimize health problems.


2011 ◽  
Vol 11 (8) ◽  
pp. 23573-23618 ◽  
Author(s):  
M. C. Minguillón ◽  
N. Perron ◽  
X. Querol ◽  
S. Szidat ◽  
S. M. Fahrni ◽  
...  

Abstract. We present results from the international field campaign DAURE (Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean), with the objective of apportioning the sources of fine carbonaceous aerosols. Submicron fine particulate matter (PM1) samples were collected during February-March 2009 and July 2009 at an urban background site in Barcelona (BCN) and at a forested regional background site in Montseny (MSY). We present radiocarbon (14C) analysis for elemental and organic carbon (EC and OC) and source apportionment for these data. We combine the results with those from component analysis of aerosol mass spectrometer (AMS) measurements, and compare to levoglucosan-based estimates of biomass burning OC, source apportionment of filter data with inorganic+EC+OC speciation, submicron bulk potassium (K) concentrations, and gaseous acetonitrile concentrations. At BCN, 87 % and 91 % of the EC on average, in winter and summer, respectively, had a fossil origin, whereas at MSY these fractions were 66 % and 79 %. The contribution of fossil sources to organic carbon (OC) at BCN was 40 % and 48 %, in winter and summer, respectively, and 31 % and 25 % at MSY. The combination of results obtained using the 14C technique, AMS data, and the correlations between fossil OC and fossil EC imply that the fossil OC at Barcelona is ~65 % primary whereas at MSY the fossil OC is mainly secondary (~85 %). Day-to-day variation in total carbonaceous aerosol loading and the relative contributions of different sources predominantly depended on the meteorological transport conditions. The estimated biogenic secondary OC at MSY only increased by ~40 % compared to the order-of-magnitude increase observed for biogenic volatile organic compounds (VOCs) between winter and summer, which highlights the uncertainties in the estimation of that component. Biomass burning contributions estimated using the 14C technique ranged from similar to higher than when estimated using other techniques, and the different estimations were highly or moderately correlated. Differences can be explained by the contribution of secondary organic matter (not included in the primary biomass burning source estimates), and/or by an overestimation of the biomass burning OC contribution by the 14C technique if the estimated biomass burning EC/OC ratio used for the calculations is too high for this region. Acetonitrile concentrations correlate well with the biomass burning EC determined by 14C. K is a noisy tracer for biomass burning.


Sign in / Sign up

Export Citation Format

Share Document