scholarly journals Ambient Air Quality and General Health Outcomes in Nigde (Turkey) between 2011 and 2017

Author(s):  
Ertan Kara ◽  
Hasan Göksel Özdilek ◽  
Emine Erman Kara ◽  
Fatih Balcı ◽  
Burcu Mestav

Background: We aimed to provide information for health practitioners and other related people about the association between ambient air quality and adverse health outcomes in the general population of Nigde, a central Turkish city, within the context of current health data epidemiological evidence. Methods: The present study highlights the connection between health problems and time series of particulate matter (PM10) and sulphur dioxide (SO2) in Nigde, Turkey between 2011 and 2017. Significant morbidity is linked to ambient air pollution, resulting in a significant economic cost to society. Results: We found that the required funds to treat cancers and chronic obstructive pulmonary disease triggered by ambient air pollution in Nigde, exceed 9 million US dollars per year, even when only the city center is taken into account. Conclusion: As Turkish cities grow and urban population density increases, air pollution issues need to be given priority in order to protect the health of the public and support sustainable development for future generations. It is recommended that particulate matter concentration in this urban center should be significantly reduced to minimize health problems.

Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 214 ◽  
Author(s):  
Iva Hůnová

Based on an analysis of related core papers and reports, this review presents a historical perspective on ambient air pollution and ambient air quality development in the modern-day Czech Republic (CR) over the past seven decades, i.e., from the 1950s to the present. It offers insights into major air pollution problems, reveals the main hot spots and problematic regions and indicates the principal air pollutants in the CR. Air pollution is not presented as a stand-alone problem, but in the wider context of air pollution impacts both on human health and the environment in the CR. The review is arranged into three main parts: (1) the time period until the Velvet Revolution of 1989, (2) the transition period of the 1990s and (3) the modern period after 2000. Obviously, a major improvement in ambient air quality has been achieved since the 1970s and 1980s, when air pollution in the former Czechoslovakia culminated. Nevertheless, new challenges including fine aerosol, benzo[a]pyrene and ground-level ozone, of which the limit values are still vastly exceeded, have emerged. Furthermore, in spite of a significant reduction in overall emissions, the atmospheric deposition of nitrogen, in particular, remains high in some regions.


Author(s):  
NV Zaitseva ◽  
IG Zhdanova-Zaplesvichko ◽  
MA Zemlyanova ◽  
AN Perezhogin ◽  
DF Savinykh

Summary. Introduction: Within the framework of the Federal Clean Air Project, it is envisaged to implement comprehensive action plans aimed at reducing air pollution and increasing the level of public satisfaction with the environmental situation in a number of industrial centers of the Russian Federation with high and extremely high levels of ambient air pollution. Decree No. 1792 of the Russian Government of December 24, 2019 approved the requirements for compensatory measures aimed at improving ambient air quality, preventing and eliminating adverse health effects of environmental factors. To increase the validity and adequacy of the measures taken, it is necessary to elaborate method approaches for Rospotrebnadzor bodies to designing and conducting studies on establishing the association between air pollution and adverse health outcomes in the population living in industrially contaminated areas. The purpose of our work was to substantiate an algorithm of actions and to demonstrate its efficiency within epidemiological studies focused on establishing and proving the causal relationship between airborne chemicals and observed health consequences in the population. Materials and methods included a set of modern hygienic and epidemiological research methods, assessment of risk and its health damage, in-depth research, and modeling of cause and effect relationships. Results: We proposed approaches and conducted studies to establish the link between industrial air pollution and the diseases diagnosed in the exposed population. Conclusions: The suggested algorithm of actions tested in the city of Bratsk proved to be effective and helped identify risk-attributed health disorders; specify the pollutants requiring development or adjustment of measures to reduce their ambient emissions; clarify and expand the list of target organs and systems for prediction and monitoring; substantiate and fulfil managerial decisions and adequate targeted preventive measures based on health damage criteria.


2018 ◽  
Vol 75 (5) ◽  
pp. 382-388 ◽  
Author(s):  
Sheryl Magzamen ◽  
Assaf P Oron ◽  
Emily R Locke ◽  
Vincent S Fan

BackgroundStudies have linked ambient air pollution to chronic obstructive pulmonary disease (COPD) healthcare encounters. However, the association between air quality and rescue medication use is unknown.ObjectivesWe assessed the role of air pollution exposure for increased short-acting beta-2-agonist (SABA) use in patients with COPD through use of remote monitoring technology.MethodsParticipants received a portable electronic inhaler sensor to record the date, time and location for SABA use over a 3-month period. Ambient air pollution data and meteorological data were collected from a centrally located federal monitoring station. Mixed-effects Poisson regression was used to examine the association of daily inhaler use with pollutant levels. Four criteria pollutants (PM2.5, PM10, O3 and NO2), two particulate matter species (elemental carbon (EC) and organic carbon), estimated coarse fraction of PM10 (PM10–2.5) and four multipollutant air quality measures were each examined separately, adjusting for covariates that passed a false discovery rate (FDR) screening.ResultsWe enrolled 35 patients with COPD (94.3% male and mean age: 66.5±8.5) with a mean forced expiratory volume in 1 s (FEV1) % predicted of 44.9+17.2. Participants had a median of 92 observation days (range 52–109). Participants’ average SABA inhaler use ranged from 0.4 to 13.1 puffs/day (median 2.8). Controlling for supplemental oxygen use, long-acting anticholinergic use, modified Medical Research Council Dyspnoea Scale and influenza season, an IQR increase in PM10 concentration (8.0 µg/m3) was associated with a 6.6% increase in daily puffs (95% CI 3.5% to 9.9%; FDR <0.001). NO2 and EC concentration were also significantly associated with inhaler use (3.9% and 2.9% per IQR increase, respectively).ConclusionsExposure to increased ambient air pollution were associated with a significant increase in SABA use for patients with COPD residing in a low-pollution area.


2021 ◽  
Author(s):  
Morufu Raimi ◽  
Timothy Kayode Samson ◽  
Ajayi Bankole Sunday ◽  
Adio Zulkarnaini Olalekan ◽  
Odipe Oluwaseun Emmanuel ◽  
...  

Abstract We can’t stop breathing, but we can do something about the quality of air that we breathe. Clean fresh air is indispensable ingredient for a good life quality. Individuals poses the right towards expecting that the breathed air will not harm people. Thus, fighting air pollution will not only improve health outcomes, productivity, and well-being, it’s also essential toward reducing the emissions of greenhouse gas as well as fighting climate change. For examples, a third of the global population is at risk from unhealthy of ambient air pollutants concentrations, with the loss of approximately 6.4 million healthy-life-years attributed specifically to chronic exposure to ambient particulate matter. Expert panels have consistently rated air pollution as a greater health hazard than water pollution. Pollution of air is the leading source of unexplained and undiagnosed diseases, besides have remained associated with a variety of serious human health risks, and in fact, a threshold has not been established under which these pollutants exert no adverse effects. This study evaluates ambient air quality at major sawmill sites in Ilorin Metropolis, Kwara State, Nigeria. “Measurements of Air pollution were accurately carried out using direct reading, automatic in situ gas monitors; Hand held mobile multi-gas monitor with model AS8900 [Combustible (LEL), and Oxygen (O2)], BLATN with model BR – Smart Series air quality monitor (PM10, Formaldehyde) and air quality multimeter with model B SIDE EET100 (Dust (PM2.5), VOC, Temperature and Relative Humidity)”. The outcomes disclosed among others, the average concentrations of CO, O2 as well as other measured parameters for instance formaldehyde (HcHo) etc., they are also consistently low as well as within acceptable range in terms of National as well as Global monitoring standards for air quality indices. However, there are few exceptions for instance the average volatile organic compounds (VOCs) concentrations, PM2.5, PM10 as well as Combustible (LEL) respectively, which are higher when compared to National and Global standards. This high figure is due to pollutant amount existing in the sawmills air environment resulting from input of influents from activities of the sawmill. However, as a result, air pollution in the city of Ilorin is found to be increasingly polluted and are of major health concern because of their synergistic action. Due to the high evidences and values, it can lead to a remarkable rise in over-all figure of hospital visits/ patients’ admissions with acute respiratory illnesses as soon as air pollutants level remained high. Hence, there is the need for an aggressive control of ambient air pollution.


2020 ◽  
Author(s):  
◽  
Phumulani Mkhize

The use of fossil fuel due to industrialisation has increased over time and resulted to atmospheric pollution. Industrial facilities utilise fossil fuel as a boiler fuel, pollutants like Sulphur Dioxide, Nitrogen Dioxide, Particulate Matter and Carbon Monoxide are generated from the combustion process. Air pollution has been and continues to be a significant health hazard over the world. Exposure to air pollution is an issue of concern due to human health and the environment. Considering that air pollution is associated with a series of adverse health effects, it is important to predict emissions from boiler stack. The purpose of this study was to analyse the distribution of atmospheric emissions emanating from boilers in the South Durban Industrial Basin. Three boilers i.e. boilers 1, 3 and 4 were considered during this research. The study focuses on the distribution of Sulphur Dioxide, Nitrogen Dioxide, Particulate Matter and Carbon Monoxide concentration emitted from coal fired boilers using Gaussian Dispersion Modelling. In this research, AERMOD, which is the dispersion modelling program approved by the US EPA, was used. The results of these modelling scenario were compared with the National Ambient Air Quality Standards. The results depicted that the concentrations of sulphur dioxide and nitrogen dioxide emissions from coal fired boilers were below the national ambient air quality standard, whereas the concentration of Particulate Matter emission in the vicinity of the receiving environment exceeded the National Ambient Air Quality Standards. Nitrogen Oxide was released at 7.91 g/s whereas sulphur dioxide and particulate matter were released at 40.86 and 18.35 g/s respectively. However, the temperatures at which these gases were released were all the same (450.20 K). Boilers 3 and 4 shared a stack i.e. emission emanating from both boilers are emitted through a single point source. The stack diameters for boilers 3 and 4 (0.8 m and 1.2 m respectively) were lower than that of boiler 1 (2.6 m). Similarly, boilers 3 and 4 had less stack heights (27.5 m and 30.5 m respectively) in comparison with boiler 1 (47.5 m). For boiler 3, the rates at which nitrogen dioxide, sulphur dioxide and particulate matter were released were 2.26, 0.12 and 3.84 g/s respectively. On the hand, for boiler 4, nitrogen oxide was released at 14.5 g/s whereas sulphur dioxide and particulate matter were released at 5.54 and 26.23 g/s respectively. The exit velocities for boilers 1, 3 and 4 were 12.2, 7.1 and 17.5 m/s respectively. These velocities were achieved at temperatures of 450.2, 320 and 504 K respectively.


Author(s):  
Saif-ur-Rehman Kashif ◽  
Fatima Tariq ◽  
Fariha Arooj

Ambient air pollution is emerging environmental problem in major cities of Pakistan. Service sector growth is 8% and there is a rapid development of infrastructure in cities especially in transport sector which causes ambient air pollution issues in mega cities. To estimate the level of pollution in the city of Lahore, ambient air quality mapping procedure was used with the help of Haz Scanner HIM-6000 equipped with different sensors and ArcGIS 10.3 software was used for mapping of these pollutants. This study continued for two months from September to October, 2017 for different pollutants like PM2.5, VOCs, Ozone, NOx, CO2, CO, SO2 and H2S. From the study, it was concluded that ambient air in Lahore has lot of pollutants especially PM2.5, NO, NO2, CO, SO2 where as conc. of VOCs, H2S and Ozone was in limits in relation to NEQs for these pollutants.  


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 678
Author(s):  
Adeeba Al-Hurban ◽  
Sawsan Khader ◽  
Ahmad Alsaber ◽  
Jiazhu Pan

This study aimed to examine the trend of ambient air pollution (i.e., ozone (O3), nitrogen monoxide (NO), nitrogen dioxide (NO2), nitrogen oxides (NOx), sulfur dioxide (SO2), carbon monoxide (CO), benzene (C6H6) and particulate matter with an aerodynamic diameter smaller than 10 microns (PM10), and non-methane hydrocarbons (NMHCs) at 10 monitoring stations located in the main residential and industrial areas in the State of Kuwait over 6 years (2012–2017). We found that the SO2 level in industrial areas (0.065 ppm) exceeded the allowable range of SO2 in residential areas (0.030 ppm). Air pollution variables were defined by the Environmental Public Authority of Kuwait (K-EPA). In this study, integrated statistical analysis was performed to compare an established air pollution database to Kuwait Ambient Air Quality Guidelines and to determine the association between pollutants and meteorological factors. All pollutants were positively correlated, with the exception of most pollutants and PM10 and O3. Meteorological factors, i.e., the ambient temperature, wind speed and humidity, were also significantly associated with the above pollutants. Spatial distribution mapping indicated that the PM10 level remained high during the southwest monsoon (the hot and dry season), while the CO level was high during the northeast monsoon (the wet season). The NO2 and O3 levels were high during the first intermonsoon season.


2014 ◽  
Vol 567 ◽  
pp. 3-7 ◽  
Author(s):  
Nurul Izma Mohammed ◽  
Nurfadhilah Othman ◽  
Khairul Bariyah Baharuddin

Complaints on poor air quality in an enclosed car park have been raised up among the public, which might cause serious health effects to the drivers, passengers, and labours who are working at the premises. Improper design of mechanical ventilation systems in a car park would result in a poor indoor environment. The exhaust emission of motor vehicle contains a variety of potentially harmful substances encompassing carbon monoxide, nitrogen oxides, sulphur dioxide, hydrocarbons, and fine particulates. In Kuala Lumpur, there is a great demand but a short supply of lands and building spaces. Thus, a large multi-storey underground car parks is a common solution for both, the government and developers. Although the health effects of the motor vehicle emissions and ambient air pollution are already known, but due to the nature of enclosed multi-storey car parks, these health risks are predicted to be intensified. Thus, it is crucial to investigate and evaluate the status of the air pollution in the enclosed car parks with emphasis on sulphur dioxide (SO2) and nitrogen dioxides (NO2). Samples were collected in one of the famous shopping malls in Kuala Lumpur using a GrayWolf Advanced Sense Direct Sense; Toxic Gas Test Meters from 8 am until 5 pm on weekdays and weekends. The results demonstrate that the concentrations of SO2 and NO2 on weekends is higher than weekdays. Besides, the concentrations for both weekdays and weekends have exceeded the standard limit set by the Malaysian Ambient Air Quality Guideline (MAAQG).


Sign in / Sign up

Export Citation Format

Share Document