scholarly journals Variability in cirrus cloud properties using a Polly<sup>XT</sup> Raman lidar over high and tropical latitudes

2020 ◽  
Vol 20 (7) ◽  
pp. 4427-4444 ◽  
Author(s):  
Kalliopi Artemis Voudouri ◽  
Elina Giannakaki ◽  
Mika Komppula ◽  
Dimitris Balis

Abstract. Measurements of geometrical and optical properties of cirrus clouds, performed with a multi-wavelength PollyXT Raman lidar during the period 2008 to 2016, are analysed. The measurements were performed with the same instrument, during sequential periods, in three places at different latitudes, Gwal Pahari (28.43∘ N, 77.15∘ E; 243 m a.s.l.) in India, Elandsfontein (26.25∘ S, 29.43∘ E; 1745 m a.s.l.) in South Africa and Kuopio (62.74∘ N, 27.54∘ E; 190 m a.s.l.) in Finland. The lidar dataset was processed by an automatic cirrus cloud masking algorithm, developed in the frame of this work. In the following, we present a statistical analysis of the lidar-retrieved geometrical characteristics (cloud boundaries, geometrical thickness) and optical properties of cirrus clouds (cloud optical depth, lidar ratio, ice crystal depolarisation ratio) measured over the three areas that correspond to subtropical and subarctic regions as well as their seasonal variability. The effect of multiple scattering from ice particles to the derived optical products is also considered and corrected in this study. Our results show that cirrus layers, which have a noticeable monthly variability, were observed between 6.5 and 13 km, with temperatures ranging from −72 to −27 ∘C. The observed differences on cirrus clouds' geometrical and optical properties over the three regions are discussed in terms of latitudinal and temperature dependence. The latitudinal dependence of the geometrical properties is consistent with satellite observations, following the pattern observed with CloudSat, with decreasing values towards the poles. The geometrical boundaries have their highest values in the subtropical regions, and overall, our results seem to demonstrate that subarctic cirrus clouds are colder, lower and optically thinner than subtropical cirrus clouds. The dependence of cirrus cloud geometrical thickness and optical properties on mid-cirrus temperatures shows a quite similar tendency for the three sites but less variability for the subarctic dataset. Cirrus clouds are geometrically and optically thicker at temperatures between −45 and −35 ∘C, and a second peak is observed at lower temperatures ∼-70 ∘C for the subarctic site. Lidar ratio values also exhibit a pattern, showing higher values moving toward the poles, with higher mean values observed over the subarctic site. The dependency of the mid-cirrus temperatures on the lidar ratio values and the particle depolarisation values is further examined. Our study shows that the highest values of the cirrus lidar ratio correspond to higher values of cirrus depolarisation and warmer cirrus. The kind of information presented here can be rather useful in the cirrus parameterisations required as input to radiative transfer models and can be a complementary tool for satellite products that cannot provide cloud vertical structure. In addition, ground-based statistics of the cirrus properties could be useful in the validation and improvement of the corresponding derived products from satellite retrievals.

2019 ◽  
Author(s):  
Kalliopi Artemis Voudouri ◽  
Elina Giannakaki ◽  
Mika Komppula ◽  
Dimitris Balis

Abstract. Measurements of cirrus clouds geometrical and optical properties, performed with a multi-wavelength PollyXT Raman Lidar, during the period 2008 to 2016 are analysed. The measurements were performed with the same instrument, during sequential periods, in three places at different latitudes, Gual Pahari (28.43° N, 77.15° E, 243 m a.s.l) in India, Elandsfontein (26.25° S, 29.43° E, 1745 m a.s.l) in South Africa and Kuopio (62.74° N, 27.54° E, 190 m a.s.l) in Finland. The lidar dataset has been processed by an automatic cirrus cloud detection algorithm. In the following, we present a statistical analysis of the lidar derived geometrical characteristics (cloud boundaries, geometrical thickness) and optical properties of cirrus clouds (cloud optical depth, lidar ratio, ice crystal depolarization ratio) measured in different latitudes that correspond to subtropical and subarctic regions as well as their seasonal variability. The effect of multiple-scattering from ice particles to the derived optical products is also considered and corrected in this study. Our results show that, over the subtropical stations, cirrus layers, which have a noticeable monthly variability, were observed between 7 to 13 km, with mid-cloud temperatures ranging from −60 °C to −21 °C and a mean thickness of 1295 ± 489 m and 1383 ± 735 m for Gual Pahari and Elandsfontein respectively. The corresponding overall mean cirrus optical depth at 355 nm is calculated to be 0.59 ± 0.39 and 0.40 ± 0.33, with lidar ratio values at 355 nm of 26 ± 12 sr and 25 ± 6 sr, respectively. A more extended dataset was acquired for the subarctic area of Kuopio Finland, between 2012 and 2016. The estimated average geometrical thickness of the cirrus clouds over Kuopio is 1200 ± 585 m and the temperature values vary from −71 °C to −21 °C, while the mean cirrus optical depth at 355 nm is 0.25 ± 0.2, with an estimated mean lidar ratio of 33 ± 7 sr, similar to the idar ratio values observed over middle latitude stations. The kind of information presented here can be rather useful in the cirrus parameterizations required as input to radiative transfer models, and can be a complementary tool to satellite products that cannot provide cloud vertical structure. In addition, a ground-based statistics of the cirrus properties could be useful in the validation and improvement of the corresponding derived products from satellite retrievals.


2021 ◽  
Author(s):  
Qiang Li ◽  
Silke Groß

&lt;p&gt;Cirrus clouds have a wide global coverage providing considerable radiative forcing on the Earth&amp;#8217;s climate system. Due to their inadequate representation in the global models, cirrus clouds can lead to large uncertainties in the climate prediction. To date, experimental and theoretical efforts have been widely carried out to study the anthropogenic effects such as aviation that may change the formation and microphysic and optical properties of cirrus clouds. Unfortunately, however, solid observational studies are still rare for us to draw any robust conclusion on anthropogenic influence on cirrus. During the COVID-19 pandemic the civil air traffic over Europe was significantly reduced. This unique situation provides a good opportunity to study the effect of air traffic on cirrus. In this work, based on the analysis of the CALIPSO measurements we present the changes of cirrus cloud properties and occurrence over Europe in March and April 2020 compared with the reference results in the previous years under normal conditions. The comparison shows that the cirrus cloud occurrence was reduced by about 30% with smaller cloud thicknesses found in April 2020. The average thickness of cirrus clouds was reduced to 1.18 km in April 2020 compared to a value of 1.40 km under normal conditions. In addition, the cirrus clouds measured in April 2020 possess smaller mean values of the particle linear depolarization ratio (PLDR) than the previous years at a high significance level, especially at colder temperatures (T&lt;-50&lt;sup&gt;o&lt;/sup&gt;C). The same exercises are extended to the observations over China and the United States. Besides the regional discrimination of cirrus clouds, we reach the final summary that cirrus clouds show significant changes in both March and April over Europe, no changes in both months over China, and significant changes only in April over the United States.&lt;/p&gt;


2021 ◽  
Author(s):  
Qiang Li ◽  
Silke Groß

Abstract. By inducing linear contrails and contrail cirrus, air traffic has a main impact on the ice cloud coverage and occurrence. During the COVID-19 pandemic the civil air traffic over Europe was significantly reduced: in March and April 2020 to about 80 % compared to the year before. This unique situation allows to study the effect of air traffic on cirrus clouds. This work investigates based on satellite lidar measurements if and how cirrus cloud properties and occurrence changed over Europe in the course of COVID-19. Cirrus cloud properties are analyzed for different years, which showed similar meteorological conditions for March and April as they were found for 2020. Comparing these years shows that the cirrus cloud occurrence was reduced by about 30 % with smaller cloud thicknesses found in April 2020. The average thickness of cirrus clouds was reduced to 1.18 km in April 2020 compared to a value of 1.40 km under normal conditions. In addition, the cirrus clouds measured in April 2020 possess smaller mean values of the particle linear depolarization ratio (PLDR) than the previous years at high significance level, especially at colder temperatures (T 


2018 ◽  
Vol 176 ◽  
pp. 05031 ◽  
Author(s):  
Kalliopi – Artemis Voudouri ◽  
Elina Giannakaki ◽  
Mika Komppula ◽  
Dimitris Balis

Geometrical and optical characteristics of cirrus clouds using Raman lidar PollyXT measurements at different locations are presented. The PollyXT has been participated in two long-term experimental campaigns, one close to New Delhi in India and one at Elandsfontein in South Africa, providing continuous measurements and covering a wide range of cloud types. First results of cirrus cloud properties at different latitudes, as well as their temporal distributions are presented in this study. An automatic cirrus clouds detection algorithm is applied based on the wavelet covariance transform. The measurements at New Delhi performed from March 2008 to February 2009, while at Elandsfontein measurements were performed from December 2009 to January 2011.


2017 ◽  
Vol 17 (5) ◽  
pp. 3619-3636 ◽  
Author(s):  
Diego A. Gouveia ◽  
Boris Barja ◽  
Henrique M. J. Barbosa ◽  
Patric Seifert ◽  
Holger Baars ◽  
...  

Abstract. Cirrus clouds cover a large fraction of tropical latitudes and play an important role in Earth's radiation budget. Their optical properties, altitude, vertical and horizontal coverage control their radiative forcing, and hence detailed cirrus measurements at different geographical locations are of utmost importance. Studies reporting cirrus properties over tropical rain forests like the Amazon, however, are scarce. Studies with satellite profilers do not give information on the diurnal cycle, and the satellite imagers do not report on the cloud vertical structure. At the same time, ground-based lidar studies are restricted to a few case studies. In this paper, we derive the first comprehensive statistics of optical and geometrical properties of upper-tropospheric cirrus clouds in Amazonia. We used 1 year (July 2011 to June 2012) of ground-based lidar atmospheric observations north of Manaus, Brazil. This dataset was processed by an automatic cloud detection and optical properties retrieval algorithm. Upper-tropospheric cirrus clouds were observed more frequently than reported previously for tropical regions. The frequency of occurrence was found to be as high as 88 % during the wet season and not lower than 50 % during the dry season. The diurnal cycle shows a minimum around local noon and maximum during late afternoon, associated with the diurnal cycle of precipitation. The mean values of cirrus cloud top and base heights, cloud thickness, and cloud optical depth were 14.3 ± 1.9 (SD) km, 12.9 ± 2.2 km, 1.4 ± 1.1 km, and 0.25 ± 0.46, respectively. Cirrus clouds were found at temperatures down to −90 °C. Frequently cirrus were observed within the tropical tropopause layer (TTL), which are likely associated to slow mesoscale uplifting or to the remnants of overshooting convection. The vertical distribution was not uniform, and thin and subvisible cirrus occurred more frequently closer to the tropopause. The mean lidar ratio was 23.3 ± 8.0 sr. However, for subvisible cirrus clouds a bimodal distribution with a secondary peak at about 44 sr was found suggesting a mixed composition. A dependence of the lidar ratio with cloud temperature (altitude) was not found, indicating that the clouds are vertically well mixed. The frequency of occurrence of cirrus clouds classified as subvisible (τ < 0. 03) were 41.6 %, whilst 37.8 % were thin cirrus (0. 03 < τ < 0. 3) and 20.5 % opaque cirrus (τ > 0. 3). Hence, in central Amazonia not only a high frequency of cirrus clouds occurs, but also a large fraction of subvisible cirrus clouds. This high frequency of subvisible cirrus clouds may contaminate aerosol optical depth measured by sun photometers and satellite sensors to an unknown extent.


2014 ◽  
Vol 119 (6) ◽  
pp. 3295-3308 ◽  
Author(s):  
Tetsu Sakai ◽  
Narihiro Orikasa ◽  
Tomohiro Nagai ◽  
Masataka Murakami ◽  
Takuya Tajiri ◽  
...  

2018 ◽  
Vol 176 ◽  
pp. 05040
Author(s):  
Guangyao Dai ◽  
Songhua Wu ◽  
Xiaoquan Song ◽  
Xiaochun Zhai

Cirrus clouds affect the energy budget and hydrological cycle of the earth’s atmosphere. The Tibetan Plateau (TP) plays a significant role in the global and regional climate. Optical and geometrical properties of cirrus clouds in the TP were measured in July-August 2014 by lidar and radiosonde. The statistics and temperature dependences of the corresponding properties are analyzed. The cirrus cloud formations are discussed with respect to temperature deviation and dynamic processes.


2003 ◽  
Vol 3 (2) ◽  
pp. 1415-1451 ◽  
Author(s):  
B. Kärcher ◽  
J. Ström

Abstract. The probability of occurrence of ice crystal number densities in young cirrus clouds is examined based on airborne measurements. The observations have been carried out at midlatitudes in both hemispheres at equivalent latitudes (~52–55° N/S) during the same season (local autumn in 2000). The in situ measurements considered in the present study include temperatures, vertical velocities, and ice crystal concentrations, the latter determined with high precision and accuracy using a counterflow virtual impactor. Most young cirrus clouds typically contain high number densities (1–10 cm−3) of small (diameter <20 μm) ice crystals. This mode dominates the probability distributions in both hemispheres and is shown to be caused by rapid cooling rates associated with updraft speeds in the range 10–100 cm s-1. A second mode containing larger crystals extends from ~1 cm−3 to low concentrations close to the detection threshold (~3×104cm−3) and is associated with lower updraft speeds. Results of a statistical analysis provide compelling evidence that the dynamical variability of vertical air motions on the mesoscale is the key factor determining the observed probability distributions of pristine ice crystal concentrations in cirrus. Other factors considered are variations of temperature as well as size, number, and ice nucleation thresholds of the freezing aerosol particles. The variability in vertical velocities is likely caused by atmospheric waves. Inasmuch as gravity waves are widespread, mesoscale variability in vertical velocities can be viewed as a universa  feature of young cirrus clouds. Large-scale models that do not account for this subgrid-scale variability yield erroneous predictions of the variability of basic cirrus cloud properties. Climate change may bring about changes in the global distribution of updraft speeds, mean air temperatures, and aerosol properties. As shown in this work, these changes could significantly modify the probability distribution of cirrus ice crystal concentrations. This study emphasizes the key role of vertical velocities and mesoscale variability in vertical velocities in controlling cirrus properties. The results suggest that, in any effort to ascribe cause to trends of cirrus cloud properties, a careful evaluation of dynamical changes in cloud formation should be done before conclusions regarding the role of other anthropogenic factors, such as changes in aerosol composition, are made.


2020 ◽  
Vol 237 ◽  
pp. 02020
Author(s):  
Hossein Panahifar ◽  
Ruhollah Moradhaseli ◽  
Hadi Bourzoie ◽  
Mahdi Gholami ◽  
Hamid Reza Khalesifard

Optical properties of long-range Saharan dust particles transported to the Iran Plateau have been investigated. The results were derived from the measurements of a dual-wavelength Depolarized backscatter/Raman lidar and a Cimel CE318-2 sunphotometer. Observations were performed in Zanjan, Northwest Iran. The backward trajectory analysis show that the lofted dust plumes come from the Saharan desert and travel along Mediterranean Sea and Turkey toward Iran. The lidar ratio within the lofted dust layer has been found with mean values of 50 sr at 532 nm. For the depolarization ratio, mean values of 25% have been found.


Cirrus ◽  
2002 ◽  
Author(s):  
David O’C. Starr ◽  
Markus Quante

Advancement in the understanding of cirrus clouds and their life cycle comes through symbiotic use of models, observations, and related concepts (fig. 18.1). Models of cirrus clouds represent an integration of our knowledge of cirrus cloud properties and processes. They provide a capacity to extend knowledge and enhance understanding in ways that complement existing observational capabilities. Models can be used to develop new theories, such as parameterizations, and focus science issues and observational requirements and developments. For example, early model results of Starr and Cox (1985a) and Starr (1987b) predicted that fine cellular structure (~lkm or less) would be found in the upper part of extended stratiform cirrus clouds. This prediction was confirmed when high-frequency sensors were deployed both for active remote sensing (Sassen et al. 1990a, 1995) and later for in-situ measurements (Quante and Brown 1992; Gultepe et al. 1995; Quante et al. 1996). Sampling rates of 10Hz, or better, are now accepted as a minimum requirement for resolving cirrus cloud internal structure and circulation where 1-Hz or coarser measurements were previously used. Similarly, discrepancies between observed cloud radiative properties and calculations (theory) based on corresponding in-situ observations of cloud microphysical properties (Sassen et al. 1990b) led to the development of improved observing capabilities for small ice crystals (Arnott et al. 1994; Miloshevich and Heymsfield 1997; Lawson et al. 1998). Such sensors are now regarded as part of the standard complement when doing in-situ microphysical measurements in cirrus. At the same time, observations are absolutely essential in developing and evaluating cloud models. No cloud modeler wants to apply a model or theory too far beyond the limits of what can be observationally confirmed, at least in gross terms. The third aspect of this triad is concepts. Although models and observations can lead to predictions or diagnosis of unexpected relationships, they are each limited by the concepts that were used in their design and/or implementation. In the end, new concepts arising from analogy to other phenomena and/or from synergistic integration of existing knowledge can lead to new understanding, new models, new instruments, and new sampling strategies (fig. 18.1). Chapter 17 focuses on observations of internal cloud circulation and structure.


Sign in / Sign up

Export Citation Format

Share Document