scholarly journals Evaporation of sulphate aerosols at low relative humidity

Author(s):  
Georgios Tsagkogeorgas ◽  
Pontus Roldin ◽  
Jonathan Duplissy ◽  
Linda Rondo ◽  
Jasmin Tröstl ◽  
...  

Abstract. Here we explore the vapour pressure of sulphuric acid at very low relative humidity, where evaporation of sulphuric acid from particles can be important in the atmospheres of Earth and Venus. We performed experiments in the CLOUD chamber at CERN forming sulphuric acid particles via nucleation and then measuring evaporation versus temperature and relative humidity. We modelled the experiments with the ADCHAM model to constrain the thermodynamic properties governing the evaporation of sulphuric acid. ADCHAM includes a thermodynamics module coupled to an aerosol dynamics module. We derived the mole fractions and activity coefficients of H2SO4, HSO4−, SO42− and SO3 in the particles and then simulated the condensation and evaporation of H2SO4 and SO3. We constrained the equilibrium constants for the dissociation of H2SO4 to HSO4− (KH2SO4) and the dehydration of H2SO4 to SO3 (xKSO3). Our results suggest that particle shrinkage is mainly governed by H2SO4 evaporation, however, we cannot dismiss a contribution from SO3 evaporation. We conclude that KH2SO4 = 2–4 ∙ 109 mol ∙ kg−1 at 288.8 ± 5 K and xKSO3 ≥ 1.4 ∙ 1010.

2002 ◽  
Vol 38 (3-4) ◽  
pp. 237-247 ◽  
Author(s):  
W. Gierlotka ◽  
K. Fitzner ◽  
M. Sukiennik

The partial vapour pressure of mercury over liquid Hg-Tl liquid solutions were determined in the temperature range from 450 to 700 K by direct vapour pressure measurements carried out with the quartz gauge. From the measured ln pHg vs. T relationships activities of mercury were determined. Using Redlich-Kister formulas logarithms of the activity coefficients were described with the following equations: From which all thermodynamic functions in the solutions can be derived.


2017 ◽  
Vol 17 (14) ◽  
pp. 8923-8938 ◽  
Author(s):  
Georgios Tsagkogeorgas ◽  
Pontus Roldin ◽  
Jonathan Duplissy ◽  
Linda Rondo ◽  
Jasmin Tröstl ◽  
...  

Abstract. Evaporation of sulfuric acid from particles can be important in the atmospheres of Earth and Venus. However, the equilibrium constant for the dissociation of H2SO4 to bisulfate ions, which is the one of the fundamental parameters controlling the evaporation of sulfur particles, is not well constrained. In this study we explore the volatility of sulfate particles at very low relative humidity. We measured the evaporation of sulfur particles versus temperature and relative humidity in the CLOUD chamber at CERN. We modelled the observed sulfur particle shrinkage with the ADCHAM model. Based on our model results, we conclude that the sulfur particle shrinkage is mainly governed by H2SO4 and potentially to some extent by SO3 evaporation. We found that the equilibrium constants for the dissociation of H2SO4 to HSO4−(KH2SO4) and the dehydration of H2SO4 to SO3 (xKSO3) are KH2SO4 = 2–4 × 109 mol kg−1 and xKSO3 ≥  1.4  ×  1010 at 288.8 ± 5 K.


2021 ◽  
Vol 50 (1) ◽  
pp. 15-19
Author(s):  
Rakesh Punia ◽  
Pavitra Kumari ◽  
Anil Kumar ◽  
AS Rathi ◽  
Ram Avtar

Progression of Alternaria blight disease was measured on two susceptible Indian mustard varieties viz., RH 30 and RH 0749 sown at three different dates. The maximum increase in disease severity was recorded between first weeks of February and last week of February. During this period, the maximum and minimum temperature, relative humidity at morning and evening, average vapour pressure of morning and evening, maximum and bright sunshine hours and wind speed were higher, which resulted in congenial conditions for severe infection by the pathogen. The disease severity was positively correlated with maximum and minimum temperature, average vapour pressure, wind speed, sunshine hours and evaporation, while relative humidity and rainfall negatively correlated with Alternaria blight on both the varieties. A maximum value of area under disease progress curve was observed on cultivar RH 30 (651.1 cm2) as compared to RH 0749 (578.9 cm2), when crop was sown on 9th November.


2012 ◽  
Vol 5 (9) ◽  
pp. 2161-2167 ◽  
Author(s):  
A. P. Praplan ◽  
F. Bianchi ◽  
J. Dommen ◽  
U. Baltensperger

Abstract. The CLOUD project investigates the influence of galactic cosmic rays on the nucleation of new particles in an environmental chamber at CERN. Dimethylamine (DMA) was injected intentionally into the CLOUD chamber to reach atmospherically relevant levels away from sources (up to 100 pptv) in order to study its effect on nucleation with sulphuric acid and water at 278 K. Quantification of DMA and also background ammonia (NH3) was performed with ion chromatography (IC). The IC method used together with the sampling line developed for CLOUD in order to measure NH3 and DMA at low pptv levels is described; the overall sampling efficiency of the method is discussed; and, finally, mixing ratios of NH3 and DMA measured during CLOUD4 are reported.


2016 ◽  
Author(s):  
Michael G. Bowler ◽  
David R. Bowler ◽  
Matthew W. Bowler

AbstractThe humidity surrounding a sample is an important variable in scientific experiments. Biological samples in particular require not just a humid atmosphere but often a relative humidity (RH) that is in equilibrium with a stabilizing solution required to maintain the sample in the same state during measurements. The controlled dehydration of macromolecular crystals can lead to significant increases in crystal order, which often leads to higher diffraction quality. Devices that can accurately control the humidity surrounding crystals on a beamline have led to this technique being increasingly adopted, as experiments become easier and more reproducible. Matching the relative humidity to the mother liquor is the first step to allow the stable mounting of a crystal. In previous work, we measured the equilibrium relative humidity for a range of concentrations of the most commonly used precipitants and showed how this related to Raoult’s law for the equilibrium vapour pressure of water above a solution. However, a discrepancy between measured values and those predicted by theory could not be explained. Here, we have used a more precise humidity control device to determine equilibrium relative humidity points. The new results are in agreement with Raoult’s law. We also present a simple argument in statistical mechanics demonstrating that the saturated vapour pressure of a solvent is proportional to its mole fraction in an ideal solution: Raoult’s Law. The same argument can be extended to the case where solvent and solute molecules are of different size, as is the case with polymers. The results provide a framework for the correct maintenance of the RH surrounding samples.SynopsisThe equilibrium relative humidity values for a number of the most commonly used precipitants in biological macromolecule crystallisation have been measured using a new humidity control device. A simple argument in statistical mechanics demonstrates that the saturated vapour pressure of a solvent is proportional to its mole fraction in an ideal solution (Raoult’s Law). The same argument can be extended to the case where solvent and solute molecules are of different size.


1981 ◽  
Vol 34 (3) ◽  
pp. 479 ◽  
Author(s):  
H Bloom ◽  
MS White

The electromotive forces of galvanic cells for the formation of PbBr2 in the molten binary salt systems, PbBr2-KBr, PbBr2,-RbBr and PbBr2-CsBr, have been measured. Activities, activity coefficients and partial molar free energies have been calculated for each component of the three systems. Integral free energies of mixing have also been calculated. Various models of mixing of molten salts have been applied to the results. The systems contain complex ions, probably mixtures of PbBr42-, PbBr64- with some PbBr3-.


2011 ◽  
Vol 391-392 ◽  
pp. 1017-1021
Author(s):  
Ru Zhang ◽  
Yan Fen Wu ◽  
Ping Hu

Six binary silane systems were chosen to calculate the activity coefficients (γ) and free energies of mixing (ΔGm). These systems included: methyldichlorosilane + methyltrichlorosilane, methyldichlorosilane + methylvinyldichlorosilane, methyldichlorosilane + toluene, methyltrichlorosilane + methylvinyldichlorosilane, methyltrichlorosilane + toluene, methylvinyldichlorosilane + toluene. Based on the Antoine constants, critical parameters of the pure components and Wilson model parameters, γ and ΔGmwere calculated. The influence factors of these thermodynamic properties were also discussed.


Sign in / Sign up

Export Citation Format

Share Document