Impact of weather parameters on alternaria blight of Indian mustard [(Brassica juncea (L.) Czern. & Coss.)]

2021 ◽  
Vol 50 (1) ◽  
pp. 15-19
Author(s):  
Rakesh Punia ◽  
Pavitra Kumari ◽  
Anil Kumar ◽  
AS Rathi ◽  
Ram Avtar

Progression of Alternaria blight disease was measured on two susceptible Indian mustard varieties viz., RH 30 and RH 0749 sown at three different dates. The maximum increase in disease severity was recorded between first weeks of February and last week of February. During this period, the maximum and minimum temperature, relative humidity at morning and evening, average vapour pressure of morning and evening, maximum and bright sunshine hours and wind speed were higher, which resulted in congenial conditions for severe infection by the pathogen. The disease severity was positively correlated with maximum and minimum temperature, average vapour pressure, wind speed, sunshine hours and evaporation, while relative humidity and rainfall negatively correlated with Alternaria blight on both the varieties. A maximum value of area under disease progress curve was observed on cultivar RH 30 (651.1 cm2) as compared to RH 0749 (578.9 cm2), when crop was sown on 9th November.

MAUSAM ◽  
2022 ◽  
Vol 73 (1) ◽  
pp. 173-180
Author(s):  
NAVNEET KAUR ◽  
M.J. SINGH ◽  
SUKHJEET KAUR

This paper aims to study the long-term trends in different weather parameters, i.e., temperature, rainfall, rainy days, sunshine hours, evaporation, relative humidity and temperature over Lower Shivalik foothills of Punjab. The daily weather data of about 35 years from agrometeorological observatory of Regional Research Station Ballowal Saunkhri representing Lower Shivalik foothills had been used for trend analysis for kharif (May - October), rabi (November - April), winter (January - February), pre-monsoon (March - May), monsoon (June - September) and post monsoon (October - December) season. The linear regression method has been used to estimate the magnitude of change per year and its coefficient of determination, whose statistical significance was checked by the F test. The annual maximum temperature, morning and evening relative humidity has increased whereas rainfall, evaporation sunshine hours and wind speed has decreased significantly at this region. No significant change in annual minimum temperature and diurnal range has been observed. Monthly maximum temperature revealed significant increase except January, June and December, whereas, monthly minimum temperature increased significantly for February, March and October and decreased for June. Among different seasons, maximum temperature increased significantly for all seasons except winter season, whereas, minimum temperature increased significantly for kharif and post monsoon season only. The evaporation, sunshine hours and wind speed have also decreased and relative humidity decreased significantly at this region. Significant reduction in kharif, monsoon and post monsoon rainfall has been observed at Lower Shivalik foothills. As the region lacks assured irrigation facilities so decreasing rainfall and change in the other weather parameters will have profound effects on the agriculture in this region so there is need to develop climate resilient agricultural technologies.


2019 ◽  
Vol 25 (2) ◽  
Author(s):  
Ram Keval ◽  
H.S. Vanajakshi ◽  
Sunil Verma ◽  
Babli Bagri

To study the seasonal incidence of insect pests of pea (P. sativum) the investigation was carried out during Rabi session of 2016-17 and 2017-18, at Agricultural Research Farm, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi. The incidence of pests infesting pea was recorded from 50th SMW to 11th SMW. During the observation it was found that P. horticola showed its appearance in the field from 1st to 11th SMW with peak population (71% leaf infestation) in 7th SMW. When population was correlated with abiotic factors it was found that there was positive association with maximum temperature (r = 0.759**), minimum temperature (r = 0.672**), wind speed (r = 0.449).and sunshine hours (r =0.583*) whereas a negative relationship was maintained with morning relative humidity (r =-0.496) and evening relative humidity (r=-0.515), during 2016- 17. Similarly, during 2017-18 there was a positive association with maximum temperature (r = 0.360), minimum temperature (r =0.431), wind speed (r = 0.544*) and sunshine hours(r=0.493) whereas a negative relationship was maintained with morning relative humidity (r =-0.277) and evening relative humidity (r=-0.365).


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Wanlin Dong ◽  
Chao Li ◽  
Qi Hu ◽  
Feifei Pan ◽  
Jyoti Bhandari ◽  
...  

Climate change has caused uneven changes in hydrological processes (precipitation and evapotranspiration) on a space-temporal scale, which would influence climate types, eventually impact agricultural production. Based on data from 61 meteorological stations from 1961 to 2014 in the North China Plain (NCP), the spatiotemporal characteristics of climate variables, such as humidity index, precipitation, and potential evapotranspiration (ET0), were analyzed. The sensitivity coefficients and contribution rates were applied to ET0. The NCP has experienced a semiarid to humid climate from north to south due to the significant decline of ET0 (−13.8 mm decade−1). In the study region, 71.0% of the sites showed a “pan evaporation paradox” phenomenon. Relative humidity had the most negative influence on ET0, while wind speed, sunshine hours, and air temperature had a positive effect on ET0. Wind speed and sunshine hours contributed the most to the spatiotemporal variation of ET0, followed by relative humidity and air temperature. Overall, the key climate factor impacting ET0 was wind speed decline in the NCP, particularly in Beijing and Tianjin. The crop yield in Shandong and Henan provinces was higher than that in the other regions with a higher humidity index. The lower the humidity index in Hebei province, the lower the crop yield. Therefore, potential water shortages and water conflict should be considered in the future because of spatiotemporal humidity variations in the NCP.


Author(s):  
DA Narutdinov ◽  
RS Rakhmanov ◽  
ES Bogomolova ◽  
SA Razgulin

Introduction: Extreme climate conditions have a negative impact on human health. Purpose: The study aimed to assess weather and climate-related risks to human health in different areas of the Krasnoyarsk Region by effective temperatures estimated during two long-term observation periods. Materials and methods: We analyzed ambient temperatures (average monthly and minimum), wind speed (average and maximum), and relative humidity in the subarctic and temperate continental zones estimated during the periods of determining climatic norms in 1961–1990 and 1991–2020. The health risk was assessed on the basis of effective temperatures. Results: In the subarctic zone, the wind strength (average and maximum values) decreased, the duration of such periods increased just like the ambient temperature while the relative humidity did not change. In temperate climates, all indicators have changed. In the subarctic zone, in the second observation period, frostbite was possible within 20–30 minutes during two months (versus 3 in the first). In the temperate climate, there was no such risk to humans. At the minimum temperature and maximum wind speed in the subarctic zone, the risk of frostbite is possible during 5 months (versus 6): after 10–15 minutes during two months and after 20–30 minutes – during three months of the year. In temperate climates, frostbite is possible within 20–30 minutes during two months (versus 3 in the first period). Conclusions: In the interval of establishing climatic norms (1991–2020), a significant increase in effective temperatures was determined: in the subarctic zone with the average wind strength and temperature in February–April and June, with maximum wind and minimum temperature – in March–July; in temperate climates, in April and June, respectively. The duration of periods of health risks posed by cold temperature exposures in the subarctic climate with average wind and temperature values equaled two months (I–II), with maximum wind speed and minimum temperatures – five months (XI–III); in the temperate climate, it was null and 2 (3) months (I, II, and XII), respectively.


2003 ◽  
Vol 28 (3) ◽  
pp. 273-278 ◽  
Author(s):  
Cláudia V. Godoy ◽  
Lílian Amorim ◽  
Armando Bergamin Filho ◽  
Herbert P. Silva ◽  
Willian J. Silva ◽  
...  

The progress of the severity of southern rust in maize (Zea mays) caused by Puccinia polysora was quantified in staggered plantings in different geographical areas in Brazil, from October to May, over two years (1995-1996 and 1996-1997). The logistic model, fitted to the data, better described the disease progress curves than the Gompertz model. Four components of the disease progress curves (maximum disease severity; area under the disease progress curve, AUDPC; area under the disease progress curve around the inflection point, AUDPCi; and epidemic rate) were used to compare the epidemics in different areas and at different times of planting. The AUDPC, AUDPCi, and the epidemic rate were analyzed in relation to the weather (temperature, relative humidity, hours of relative humidity >90%, and rainfall) and recorded during the trials. Disease severity reached levels greater than 30% in Piracicaba and Guaíra in the plantings between December and January. Lower values of AUDPC occurred in later plantings at both locations. The epidemic rate was positively correlated (P < 0.05) with the mean daily temperatures and negatively correlated with hours of relative humidity >90%. The AUDPC was not correlated with any weather variable. The AUDPCi was negatively related to both variables connected to humidity, but not to rain. Long periods (mostly >13 h day-1) of relative humidity >90% (that corresponded to leaf wetness) occurred in Castro. Severity of southern rust in maize has always been low in Castro, thus the negative correlations between disease and the two humidity variables.


Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 195
Author(s):  
Rashmi Yadav ◽  
J. Nanjundan ◽  
Ashish K. Gupta ◽  
Mahesh Rao ◽  
Jameel Akhtar ◽  
...  

In rapeseed and mustard, the major diseases (downy mildew, white rust, Alternaria blight and Sclerotinia stem rot) cause 37–47%loss in pod formation and 17–54% reduction in grain yield. The identification of new sources of resistance is a high priority in breeding programs. About 3000 germplasm accessions of Indian mustard were evaluated under multiple environments (3 seasons) at hot spots (4 locations) and under artificial epiphytophic conditions against insect pests and diseases (aphids, white rust, powdery mildew and Alternaria blight). Accessions IC265495, IC313380, EC766091, EC766133, EC766134, EC766192, EC766230, EC766272 were identified as highly resistant to white rust (A. candida) with disease severity reaction (Percent disease severity Index, PDI = 0) under artificial inoculation. Accession RDV 29 showed the inheritance of resistant source for powdery mildew in Indian mustard. Screening of brassica wild relatives (about 25 species) for white rust found that Brassica fruticulosa, Brassica tournefortii, Camelina sativa, Diplotaxis assurgens, D. catholica, D. cretacia, D. Erucoides, D. Muralis, Lepidium sativum had highly resistance (PDI = 0) to Delhi isolates of white rust. Several traits identified from cultivated and related species will be useful for genetic improvement of rapeseed and mustard.


2015 ◽  
Vol 17 (1) ◽  
pp. 175-185

<div> <p>The present study analyses future climate uncertainty for the 21st century over Tamilnadu state for six weather parameters: solar radiation, maximum temperature, minimum temperature, relative humidity, wind speed and rainfall. The climate projection data was dynamically downscaled using high resolution regional climate models, PRECIS and RegCM4 at 0.22&deg;x0.22&deg; resolution. PRECIS RCM was driven by HadCM3Q ensembles (HQ0, HQ1, HQ3, HQ16) lateral boundary conditions (LBCs) and RegCM4 driven by ECHAM5 LBCs for 130 years (1971-2100). The deviations in weather variables between 2091-2100 decade and the base years (1971-2000) were calculated for all grids of Tamilnadu for ascertaining the uncertainty. These deviations indicated that all model members projected no appreciable difference in relative humidity, wind speed and solar radiation. The temperature (maximum and minimum) however showed a definite increasing trend with 1.8 to 4.0&deg;C and 2.0 to 4.8&deg;C, respectively. The model members for rainfall exhibited a high uncertainty as they projected high negative and positive deviations (-379 to 854 mm). The spatial representation of maximum and minimum temperature indicated a definite rhythm of increment from coastal area to inland. However, variability in projected rainfall was noticed.</p> </div> <p>&nbsp;</p>


2021 ◽  
Vol 53 (2) ◽  
pp. 182-199
Author(s):  
Rusmawan Suwarman ◽  
Novitasari Novitasari ◽  
I Dewa Gede Agung Junnaedhi

This study aims to understand the characteristic of evaporation and to evaluate the evaporation estimation methods to be employed in Bandung by using observation data at three different land cover characteristics sites, namely, densely vegetated area (Baleendah), densely built-up area (Ujung Berung), and mix of buildings and vegetation area (ITB). Observation data used are hourly evaporation, vapour pressure deficit, temperature, relative humidity, wind speed, and radiation. The analysis was done mostly by using statistical methods such as regression analysis and error comparison. The result shows the dominant weather factor affecting the evaporation in ITB and Ujung Berung is vapour pressure deficit, and in Baleendah is solar radiation. The methods of evaporation estimations used in this study are Trabert, Schendel, Turc, and CIMIS-Penman methods. The result shows that the original constant values of those methods are significantly correlated. However, the Schendel is found the most overestimated, and the second is Turc. The best estimated evaporation in Baleendah, ITB, and Ujung Berung is calculated using CIMIS-Penman with one hour lag of radiation, Trabert, and Calibrated Schendel, respectively. The improvement of constant value was applied to Schendel and the result is better than the original constants.


MAUSAM ◽  
2021 ◽  
Vol 59 (3) ◽  
pp. 339-346
Author(s):  
N. CHATTOPADHYAY ◽  
R. P. SAMUI ◽  
S. K. BANERJEE

In the present study the effect of meteorological parameters on cotton growth at three different stations in the dry farming tract of peninsular India were studied critically. Increase in minimum temperature                (above normal) particularly at vegetative and flowering stages favoured the yield of three varieties of cotton (AHH - 468, MCU - 9 and MCU - 10) under study.  Decrease in maximum temperature at flowering and boll development stages was found to be conducive for the higher yield of AHH – 468 variety of cotton at Akola.  In general, relative humidity was positively correlated with the yield of AHH – 468 varieties at Akola and MCU – 10 varieties at Kovilpatti. Lower values of bright sunshine hours (<5 hours) during vegetative and flowering were found to be helpful for increased yield of cotton at Akola. Rainfall at the beginning of the season favoured the yield of the crop. 


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3495
Author(s):  
Fujie Zhang ◽  
Zihan Liu ◽  
Lili Zhangzhong ◽  
Jingxin Yu ◽  
Kaili Shi ◽  
...  

Reference evapotranspiration (ET0) is an important part of the water cycle and energy cycle during crop growth. Understanding the influencing factors and spatiotemporal variations of ET0 can guide regional water-saving irrigation and regulate agricultural production. Data for daily meteorological observations of temperature, relative humidity, wind speed, and sunshine hours from 38 surface meteorological stations were used to analyze the spatiotemporal variations and trends in Shandong Province from 1980 to 2019. (1) The ET0 from 1980 to 2019 was 1070.5 mm, and there was a significant downward trend in the climate tendency rate of −7.92/10 a. The climate of Shandong Province became warmer and drier. The average annual temperature showed a significant upward trend, while the average annual relative humidity and average annual sunshine hours showed significant downward trends. (2) The annual ET0 ratio in spring, summer, autumn, and winter was 29%, 40%, 21%, and 10%, respectively. (3) A change in Shandong Province’s interannual ET0 occurred in 2002, with a decrease of 130.74 mm since then. (4) The ET0 was positively correlated with temperature, wind speed, and sunshine hours and negatively correlated with relative humidity. This study provides a scientific basis for the regulation and control of agricultural production in Shandong Province.


Sign in / Sign up

Export Citation Format

Share Document