scholarly journals Large-Scale Tropospheric Transport in the Chemistry Climate Model Initiative (CCMI) Simulations

Author(s):  
Clara Orbe ◽  
Huang Yang ◽  
Darryn W. Waugh ◽  
Guang Zeng ◽  
Olaf Morgenstern ◽  
...  

Abstract. Understanding and modeling the large-scale transport of trace gases and aerosols is important for interpreting past (and projecting future) changes in atmospheric composition. Here we show that there are large differences in the global-scale atmospheric transport properties among models participating in the IGAC SPARC Chemistry-Climate Model Initiative (CCMI). Specifically, we find up to 40 % differences in the transport timescales connecting the Northern Hemisphere (NH) midlatitude surface to the Arctic and to Southern Hemisphere high latitudes, where the mean age ranges between 1.7 years and 2.6 years. We show that these differences are related to large differences in vertical transport among the simulations and, in particular, to differences in parameterized convection over the oceans. While stronger convection over NH midlatitudes is associated with slower transport to the Arctic, stronger convection in the tropics and subtropics is associated with faster interhemispheric transport. We also show that the differences among simulations constrained with fields derived from the same reanalysis products are as large as (and, in some cases, larger than) the differences among free-running simulations, due to larger differences in parameterized convection. Our results indicate that care must be taken when using simulations constrained with analyzed winds to interpret the influence of meteorology on tropospheric composition.

2018 ◽  
Vol 18 (10) ◽  
pp. 7217-7235 ◽  
Author(s):  
Clara Orbe ◽  
Huang Yang ◽  
Darryn W. Waugh ◽  
Guang Zeng ◽  
Olaf Morgenstern ◽  
...  

Abstract. Understanding and modeling the large-scale transport of trace gases and aerosols is important for interpreting past (and projecting future) changes in atmospheric composition. Here we show that there are large differences in the global-scale atmospheric transport properties among the models participating in the IGAC SPARC Chemistry–Climate Model Initiative (CCMI). Specifically, we find up to 40 % differences in the transport timescales connecting the Northern Hemisphere (NH) midlatitude surface to the Arctic and to Southern Hemisphere high latitudes, where the mean age ranges between 1.7 and 2.6 years. We show that these differences are related to large differences in vertical transport among the simulations, in particular to differences in parameterized convection over the oceans. While stronger convection over NH midlatitudes is associated with slower transport to the Arctic, stronger convection in the tropics and subtropics is associated with faster interhemispheric transport. We also show that the differences among simulations constrained with fields derived from the same reanalysis products are as large as (and in some cases larger than) the differences among free-running simulations, most likely due to larger differences in parameterized convection. Our results indicate that care must be taken when using simulations constrained with analyzed winds to interpret the influence of meteorology on tropospheric composition.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 625
Author(s):  
Ansgar Schanz ◽  
Klemens Hocke ◽  
Niklaus Kämpfer ◽  
Simon Chabrillat ◽  
Antje Inness ◽  
...  

In this study, we compare the diurnal variation in stratospheric ozone of the MACC (Monitoring Atmospheric Composition and Climate) reanalysis, ECMWF Reanalysis Interim (ERA-Interim), and the free-running WACCM (Whole Atmosphere Community Climate Model). The diurnal variation of stratospheric ozone results from photochemical and dynamical processes depending on altitude, latitude, and season. MACC reanalysis and WACCM use similar chemistry modules and calculate a similar diurnal cycle in ozone when it is caused by a photochemical variation. The results of the two model systems are confirmed by observations of the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) experiment and three selected sites of the Network for Detection of Atmospheric Composition Change (NDACC) at Mauna Loa, Hawaii (tropics), Bern, Switzerland (midlatitudes), and Ny-Ålesund, Svalbard (high latitudes). On the other hand, the ozone product of ERA-Interim shows considerably less diurnal variation due to photochemical variations. The global maxima of diurnal variation occur at high latitudes in summer, e.g., near the Arctic NDACC site at Ny-Ålesund, Svalbard. The local OZORAM radiometer observes this effect in good agreement with MACC reanalysis and WACCM. The sensed diurnal variation at Ny-Ålesund is up to 8% (0.4 ppmv) due to photochemical variations in summer and negligible during the dynamically dominated winter. However, when dynamics play a major role for the diurnal ozone variation as in the lower stratosphere (100–20 hPa), the reanalysis models ERA-Interim and MACC which assimilate data from radiosondes and satellites outperform the free-running WACCM. Such a domain is the Antarctic polar winter where a surprising novel feature of diurnal variation is indicated by MACC reanalysis and ERA-Interim at the edge of the polar vortex. This effect accounts for up to 8% (0.4 ppmv) in both model systems. In summary, MACC reanalysis provides a global description of the diurnal variation of stratospheric ozone caused by dynamics and photochemical variations. This is of high interest for ozone trend analysis and other research which is based on merged satellite data or measurements at different local time.


2020 ◽  
Vol 20 (6) ◽  
pp. 3809-3840 ◽  
Author(s):  
Clara Orbe ◽  
David A. Plummer ◽  
Darryn W. Waugh ◽  
Huang Yang ◽  
Patrick Jöckel ◽  
...  

Abstract. We provide an overview of the REF-C1SD specified-dynamics experiment that was conducted as part of phase 1 of the Chemistry-Climate Model Initiative (CCMI). The REF-C1SD experiment, which consisted of mainly nudged general circulation models (GCMs) constrained with (re)analysis fields, was designed to examine the influence of the large-scale circulation on past trends in atmospheric composition. The REF-C1SD simulations were produced across various model frameworks and are evaluated in terms of how well they represent different measures of the dynamical and transport circulations. In the troposphere there are large (∼40 %) differences in the climatological mean distributions, seasonal cycle amplitude, and trends of the meridional and vertical winds. In the stratosphere there are similarly large (∼50 %) differences in the magnitude, trends and seasonal cycle amplitude of the transformed Eulerian mean circulation and among various chemical and idealized tracers. At the same time, interannual variations in nearly all quantities are very well represented, compared to the underlying reanalyses. We show that the differences in magnitude, trends and seasonal cycle are not related to the use of different reanalysis products; rather, we show they are associated with how the simulations were implemented, by which we refer both to how the large-scale flow was prescribed and to biases in the underlying free-running models. In most cases these differences are shown to be as large or even larger than the differences exhibited by free-running simulations produced using the exact same models, which are also shown to be more dynamically consistent. Overall, our results suggest that care must be taken when using specified-dynamics simulations to examine the influence of large-scale dynamics on composition.


2019 ◽  
Author(s):  
Clara Orbe ◽  
David A. Plummer ◽  
Darryn W. Waugh ◽  
Huang Yang ◽  
Patrick Jöckel ◽  
...  

Abstract. Here we provide an overview of the REF-C1SD Specified-Dynamics experiment that was conducted as part of Phase 1 of the Chemistry-Climate Model Initiative (CCMI). The REF-C1SD experiment, which consisted of mainly online general circulation models (GCMs) constrained with (re)analysis fields, was designed to examine the influence of the large-scale circulation on past trends in atmospheric composition. The REF-C1SD simulations were produced across various model frameworks and we evaluate how well the simulations represent different measures of the dynamical and transport circulations. In the troposphere there are large (~ 40 %) differences in the climatological mean distributions and seasonal cycle amplitude of the meridional and vertical winds. In the stratosphere there are similarly large (~ 50 %) differences in the magnitude and seasonal cycle amplitude of the Transformed Eulerian Mean circulation and among various chemical and idealized tracers. For nearly all variables these differences are not related to the use of different reanalysis products; rather, we show they are associated with how the simulations were implemented, by which we refer both to how the large-scale flow was prescribed and to biases in the underlying free-running models. Furthermore, in most cases these differences are shown to be as large or even larger than the differences exhibited by free-running simulations produced using the exact same models. Overall, our results suggest that care must be taken when using specified-dynamics simulations to examine the influence of large-scale dynamics on composition.


2021 ◽  
pp. 1-45

Abstract This study explores the potential predictability of Southwest US (SWUS) precipitation for the November-March season in a set of numerical experiments performed with the Whole Atmospheric Community Climate Model. In addition to the prescription of observed sea surface temperature and sea ice concentration, observed variability from the MERRA-2 reanalysis is prescribed in the tropics and/or the Arctic through nudging of wind and temperature. These experiments reveal how a perfect prediction of tropical and/or Arctic variability in the model would impact the prediction of seasonal rainfall over the SWUS, at various time scales. Imposing tropical variability improves the representation of the observed North Pacific atmospheric circulation, and the associated SWUS seasonal precipitation. This is also the case at the subseasonal time scale due to the inclusion of the Madden-Julian Oscillation (MJO) in the model. When additional nudging is applied in the Arctic, the model skill improves even further, suggesting that improving seasonal predictions in high latitudes may also benefit prediction of SWUS precipitation. An interesting finding of our study is that subseasonal variability represents a source of noise (i.e., limited predictability) for the seasonal time scale. This is because when prescribed in the model, subseasonal variability, mostly the MJO, weakens the El Niño Southern Oscillation (ENSO) teleconnection with SWUS precipitation. Such knowledge may benefit S2S and seasonal prediction as it shows that depending on the amount of subseasonal activity in the tropics on a given year, better skill may be achieved in predicting subseasonal rather than seasonal rainfall anomalies, and conversely.


2016 ◽  
Author(s):  
Mike J. Newland ◽  
Patricia Martinerie ◽  
Emmanuel Witrant ◽  
Detlev Helmig ◽  
David R. Worton ◽  
...  

Abstract. The NOX (NO and NO2) and HOX (OH and HO2) budgets of the atmosphere exert a major influence on atmospheric composition, controlling removal of primary pollutants and formation of a wide range of secondary products, including ozone, that can influence human health and climate. However, there remain large uncertainties in the changes to these budgets over recent decades. Due to their short atmospheric lifetimes, NOX and HOX are highly variable in space and time, and so the measurements of these species are of very limited value for examining long term, large scale changes to their budgets. Here, we take an alternative approach by examining long-term atmospheric trends of alkyl nitrates, the formation of which is dependent on the atmospheric NO / HO2 ratio. We derive long term trends in the alkyl nitrates from measurements in firn air from the NEEM site, Greenland. Their mixing ratios increased by a factor of 4–5 between the 1970s and 1990s. This was followed by a steep decline to the sampling date of 2008. Moreover, we examine how the trends in the alkyl nitrates compare to similarly derived trends in their parent alkanes (i.e. the alkanes which, when oxidised in the presence of NOX, lead to the formation of the alkyl nitrates). The ratios of the alkyl nitrates to their parent alkanes increase from around 1970 to the late 1990's consistent with large changes to the [NO] / [HO2] ratio in the northern hemisphere atmosphere during this period. These could represent historic changes to NOX sources and sinks. Alternatively, they could represent changes to concentrations of the hydroxyl radical, OH, or to the transport time of the air masses from source regions to the Arctic.


2019 ◽  
Author(s):  
Nicholas A. Davis ◽  
Sean M. Davis ◽  
Robert W. Portmann ◽  
Eric Ray ◽  
Karen H. Rosenlof ◽  
...  

Abstract. Specified dynamics (SD) schemes relax the circulation in climate models toward a reference meteorology to simulate historical variability. These simulations are widely used to isolate the dynamical contributions to variability and trends in trace gas species. However, it is not clear if trends in the stratospheric overturning circulation are properly reproduced by SD schemes. This study assesses numerous SD schemes and modeling choices in the Community Earth System Model (CESM) Whole Atmosphere Chemistry Climate Model (WACCM) to determine a set of best practices for reproducing interannual variability and trends in tropical stratospheric upwelling estimated by reanalyses. Nudging toward the reanalysis meteorology as is typically done in SD simulations expectedly changes the model’s mean upwelling compared to its free-running state, but does not accurately reproduce upwelling trends present in the underlying reanalysis. In contrast, nudging to anomalies from the climatological winds or from the zonal mean winds and temperatures preserves WACCM’s climatology and better reproduces trends in stratospheric upwelling. An SD scheme’s performance in simulating the acceleration of the shallow branch of the mean meridional circulation from 1980–2017 hinges on its ability to simulate the downward shift of subtropical lower stratospheric wave momentum forcing. Key to this is not nudging the zonal-mean temperature field. Gravity wave momentum forcing, which drives a substantial fraction of the upwelling in WACCM, cannot be constrained by nudging and presents an upper-limit on the performance of these schemes.


2020 ◽  
Author(s):  
Bronwen L. Konecky ◽  
Nicholas P. McKay ◽  
Olga V. Churakova (Sidorova) ◽  
Laia Comas-Bru ◽  
Emilie P. Dassié ◽  
...  

Abstract. Reconstructions of global hydroclimate during the Common Era (CE; the past ~ 2000 years) are important for providing context for current and future global environmental change. Stable isotope ratios in water are quantitative indicators of hydroclimate on regional to global scales, and these signals are encoded in a wide range of natural geologic archives. Here we present the Iso2k database, a global compilation of previously published datasets from a variety of natural archives that record the stable oxygen (δ18O) or hydrogen (δ2H) isotopic composition of environmental waters, which reflect hydroclimate changes over the CE. The Iso2k database contains 756 isotope records from the terrestrial and marine realms, including: glacier and ground ice (205); speleothems (68); corals, sclerosponges, and mollusks (145); wood (81); lake sediments and other terrestrial sediments (e.g., loess) (158); and marine sediments (99). Individual datasets have temporal resolutions ranging from sub-annual to centennial, and include chronological data where available. A fundamental feature of the database is its comprehensive metadata, which will assist both experts and non-experts in the interpretation of each record and in data synthesis. Key metadata fields have standardized vocabularies to facilitate comparisons across diverse archives and with climate model simulated fields. This is the first global-scale collection of water isotope proxy records from multiple types of geological and biological archives. It is suitable for evaluating hydroclimate processes through time and space using large-scale synthesis, model-data intercomparison and (paleo)data assimilation. The Iso2k database is available for download at: https://doi.org/10.6084/m9.figshare.11553162 (McKay and Konecky, 2020).


2021 ◽  
Author(s):  
Eemeli Holopainen ◽  
Harri Kokkola ◽  
Anton Laakso ◽  
Thomas Kühn

<p><span>Black carbon (BC) affects the radiation budget of the Earth by absorbing solar radiation, darkening snow and ice covers, and influencing cloud formation and life cycle. Modelling BC in remote regions, such as the Arctic, has large inter-model variability which causes variation in the modelled aerosol effect over the Arctic. This variability can be due to differences in the transport of aerosol species which is affected by how wet deposition is modelled. </span></p><p><span> In this study we developed an aerosol size-resolved in-cloud wet deposition scheme for liquid and ice clouds for models which use a size-segregated aerosol description. This scheme was tested in the ECHAM-HAMMOZ global aerosol-climate model. The scheme was compared to the original wet deposition scheme which uses fixed scavenging coefficients for different sized particles. The comparison included vertical profiles and mass and number wet deposition fluxes, and it showed that the current scheme produced spuriously long BC lifetimes when compared to the estimates made in other studies. Thus, to find a better setup for simulating aerosol lifetimes and vertical profiles we conducted simulations where we altered the aerosol emission distribution and hygroscopicity.</span></p><p><span> We compared the modelled BC vertical profiles to the ATom aircraft campaign measurements. In addition, we compared the aerosol lifetimes against those from AEROCOM model means. We found that, without further tuning, the current scheme overestimates the BC concentrations and lifetimes more than the fixed scavenging scheme when compared to the measurements. Sensitivity studies showed that the model skill of reproducing the measured vertical BC mass concentrations improved when BC emissions were directed to larger size classes, they were mixed with soluble compounds during emission, or BC-containing particles were transferred to soluble size classes after aging. These changes also produced atmospheric BC lifetimes which were closer to AEROCOM model means. The best comparison with the measured vertical profiles and estimated BC lifetimes was when BC was mixed with soluble aerosol compounds during emission.</span></p>


2019 ◽  
Vol 116 (30) ◽  
pp. 14910-14915 ◽  
Author(s):  
Joseph R. McConnell ◽  
Nathan J. Chellman ◽  
Andrew I. Wilson ◽  
Andreas Stohl ◽  
Monica M. Arienzo ◽  
...  

Lead pollution in Arctic ice reflects large-scale historical changes in midlatitude industrial activities such as ancient lead/silver production and recent fossil fuel burning. Here we used measurements in a broad array of 13 accurately dated ice cores from Greenland and Severnaya Zemlya to document spatial and temporal changes in Arctic lead pollution from 200 BCE to 2010 CE, with interpretation focused on 500 to 2010 CE. Atmospheric transport modeling indicates that Arctic lead pollution was primarily from European emissions before the 19th-century Industrial Revolution. Temporal variability was surprisingly similar across the large swath of the Arctic represented by the array, with 250- to 300-fold increases in lead pollution observed from the Early Middle Ages to the 1970s industrial peak. Superimposed on these exponential changes were pronounced, multiannual to multidecadal variations, marked by increases coincident with exploitation of new mining regions, improved technologies, and periods of economic prosperity; and decreases coincident with climate disruptions, famines, major wars, and plagues. Results suggest substantial overall growth in lead/silver mining and smelting emissions—and so silver production—from the Early through High Middle Ages, particularly in northern Europe, with lower growth during the Late Middle Ages into the Early Modern Period. Near the end of the second plague pandemic (1348 to ∼1700 CE), lead pollution increased sharply through the Industrial Revolution. North American and European pollution abatement policies have reduced Arctic lead pollution by >80% since the 1970s, but recent levels remain ∼60-fold higher than at the start of the Middle Ages.


Sign in / Sign up

Export Citation Format

Share Document