scholarly journals Supplementary material to "Field characterization of the PM<sub>2.5</sub> Aerosol Chemical Speciation Monitor: insights into the composition, sources and processes of fine particles in Eastern China"

Author(s):  
Yunjiang Zhang ◽  
Lili Tang ◽  
Philip L. Croteau ◽  
Olivier Favez ◽  
Yele Sun ◽  
...  
2017 ◽  
Vol 17 (23) ◽  
pp. 14501-14517 ◽  
Author(s):  
Yunjiang Zhang ◽  
Lili Tang ◽  
Philip L. Croteau ◽  
Olivier Favez ◽  
Yele Sun ◽  
...  

Abstract. A PM2.5-capable aerosol chemical speciation monitor (Q-ACSM) was deployed in urban Nanjing, China, for the first time to measure in situ non-refractory fine particle (NR-PM2.5) composition from 20 October to 19 November 2015, along with parallel measurements of submicron aerosol (PM1) species by a standard Q-ACSM. Our results show that the NR-PM2.5 species (organics, sulfate, nitrate, and ammonium) measured by the PM2.5-Q-ACSM are highly correlated (r2 > 0.9) with those measured by a Sunset Lab OC  /  EC analyzer and a Monitor for AeRosols and GAses (MARGA). The comparisons between the two Q-ACSMs illustrated similar temporal variations in all NR species between PM1 and PM2.5, yet substantial mass fractions of aerosol species were observed in the size range of 1–2.5 µm. On average, NR-PM1−2.5 contributed 53 % of the total NR-PM2.5, with sulfate and secondary organic aerosols (SOAs) being the two largest contributors (26 and 27 %, respectively). Positive matrix factorization of organic aerosol showed similar temporal variations in both primary and secondary OAs between PM1 and PM2.5, although the mass spectra were slightly different due to more thermal decomposition on the capture vaporizer of the PM2.5-Q-ACSM. We observed an enhancement of SOA under high relative humidity conditions, which is associated with simultaneous increases in aerosol pH, gas-phase species (NO2, SO2, and NH3) concentrations and aerosol water content driven by secondary inorganic aerosols. These results likely indicate an enhanced reactive uptake of SOA precursors upon aqueous particles. Therefore, reducing anthropogenic NOx, SO2, and NH3 emissions might not only reduce secondary inorganic aerosols but also the SOA burden during haze episodes in China.


2017 ◽  
Author(s):  
Yunjiang Zhang ◽  
Lili Tang ◽  
Philip L. Croteau ◽  
Olivier Favez ◽  
Yele Sun ◽  
...  

Abstract. A PM2.5-capable aerosol chemical speciation monitor (ACSM) was deployed in urban Nanjing, China for the first time to measure in-situ non-refractory fine particle (NR-PM2.5) composition from October 20 to November 19, 2015 along with parallel measurements of submicron aerosol (PM1) species by a standard ACSM. Our results show that the NR-PM2.5 species (organics, sulfate, nitrate, and ammonium) measured by the PM2.5-ACSM are highly correlated (r2 > 0.9) with those measured by a Sunset Lab OC/EC Analyzer and a Monitor for AeRosols and GAses (MARGA). The comparisons between the two ACSMs illustrated similar temporal variations in all NR species between PM1 and PM2.5, yet substantial mass fractions of aerosol species were observed in the size range of 1–2.5 μm. On average, NR-PM1–2.5 contributed 53 % of the total NR-PM2.5 with sulfate and secondary organic aerosols (SOA) being the two largest contributors (26 % and 27 %, respectively). Rapid formation and thereafter growth of secondary inorganic aerosols (SIA) were observed under fog processing in NH3-rich environments. Positive matrix factorization of organic aerosol showed similar temporal variations in both primary and secondary OA between PM1 and PM2.5 although the mass spectra were slightly different due to more thermal decomposition on the capture vaporizer of PM2.5-ACSM. We observed an enhancement of SOA under high relative humidity conditions, which is associated with simultaneous increases in particle surface area, gas-phase species (NO2, SO2, and NH3) concentrations and aerosol water content driven by anthropogenic SIA. These results likely indicate an enhanced reactive uptake of SOA precursors upon aqueous particles. Therefore, reducing anthropogenic NOx, SO2, and NH3 emissions might not only reduce SIA but also SOA burden during haze episodes in China.


2018 ◽  
Author(s):  
Junfeng Wang ◽  
Dantong Liu ◽  
Xinlei Ge ◽  
Yangzhou Wu ◽  
Fuzhen Shen ◽  
...  

2019 ◽  
Author(s):  
Oriol Planas ◽  
Feng Wang ◽  
Markus Leutzsch ◽  
Josep Cornella

The ability of bismuth to maneuver between different oxidation states in a catalytic redox cycle, mimicking the canonical organometallic steps associated to a transition metal, is an elusive and unprecedented approach in the field of homogeneous catalysis. Herein we present a catalytic protocol based on bismuth, a benign and sustainable main-group element, capable of performing every organometallic step in the context of oxidative fluorination of boron compounds; a territory reserved to transition metals. A rational ligand design featuring hypervalent coordination together with a mechanistic understanding of the fundamental steps, permitted a catalytic fluorination protocol based on a Bi(III)/Bi(V) redox couple, which represents a unique example where a main-group element is capable of outperforming its transition metal counterparts.<br>A main text and supplementary material have been attached as pdf files containing all the methodology, techniques and characterization of the compounds reported.<br>


Author(s):  
Weiqi Xu ◽  
Chun Chen ◽  
Yanmei Qiu ◽  
Conghui Xie ◽  
Yunle Chen ◽  
...  

Organic aerosol (OA), a large fraction of fine particles, has a large impact on climate radiative forcing and human health, and the impact depends strongly on size distributions. Here we...


2012 ◽  
Vol 51 ◽  
pp. 11-20 ◽  
Author(s):  
Yang Zhou ◽  
Likun Xue ◽  
Tao Wang ◽  
Xiaomei Gao ◽  
Zhe Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document