scholarly journals A satellite and reanalysis view of cloud organization, thermodynamic, and dynamic variability within the subtropical marine boundary layer

2017 ◽  
Author(s):  
Brian H. Kahn ◽  
Georgios Matheou ◽  
Qing Yue ◽  
Thomas Fauchez ◽  
Eric J. Fetzer ◽  
...  

Abstract. The global-scale patterns and covariances of subtropical marine boundary layer (MBL) cloud fraction and spatial organization with atmospheric thermodynamic and dynamic fields remain poorly understood. We describe a novel approach that leverages coincident NASA A-train and the Modern Era Retrospective-Analysis for Research and Applications (MERRA) data to quantify the relationships in the subtropical MBL derived at the native pixel and grid resolution. Four subtropical oceanic regions that capture transitions from closed-cell stratocumulus to open-cell trade cumulus are investigated. We define stratocumulus and cumulus regimes based exclusively from infrared-based thermodynamic phase. Visible reflectances are normally distributed within stratocumulus and are increasingly skewed away from the coast where disorganized cumulus dominates. Increases in MBL depth, wind speed and effective radius (re), and reductions in 700–1000 hPa moist static energy differences and 700 and 850 hPa vertical velocity, correspond with increases in reflectance skewness. We posit that a more robust representation of the cloudy MBL is obtained using visible reflectance rather than retrievals of optical thickness that are limited to a smaller subset of cumulus. An increase in re within shallow cumulus is strongly related to higher MBL wind speeds that further correspond to increased precipitation occurrence according to CloudSat. Our results are consistent with surface-based observations and suggest that the combination of A-train and MERRA data sets have potential to add global context to our process understanding of the subtropical cumulus-dominated MBL.

2017 ◽  
Vol 17 (15) ◽  
pp. 9451-9468 ◽  
Author(s):  
Brian H. Kahn ◽  
Georgios Matheou ◽  
Qing Yue ◽  
Thomas Fauchez ◽  
Eric J. Fetzer ◽  
...  

Abstract. The global-scale patterns and covariances of subtropical marine boundary layer (MBL) cloud fraction and spatial variability with atmospheric thermodynamic and dynamic fields remain poorly understood. We describe an approach that leverages coincident NASA A-train and the Modern Era Retrospective-Analysis for Research and Applications (MERRA) data to quantify the relationships in the subtropical MBL derived at the native pixel and grid resolution. A new method for observing four subtropical oceanic regions that capture transitions from stratocumulus to trade cumulus is demonstrated, where stratocumulus and cumulus regimes are determined from infrared-based thermodynamic phase. Visible radiances are normally distributed within stratocumulus and are increasingly skewed away from the coast, where trade cumulus dominates. Increases in MBL depth, wind speed, and effective radius (re), and reductions in 700–1000 hPa moist static energy differences and 700 and 850 hPa vertical velocity correspond with increases in visible radiance skewness. We posit that a more robust representation of the cloudy MBL is obtained using visible radiance rather than retrievals of optical thickness that are limited to a smaller subset of cumulus. The method using the combined A-train and MERRA data set has demonstrated that an increase in re within shallow cumulus is strongly related to higher MBL wind speeds that further correspond to increased precipitation occurrence according to CloudSat, previously demonstrated with surface observations. Hence, the combined data sets have the potential of adding global context to process-level understanding of the MBL.


2020 ◽  
Author(s):  
Martin Werner ◽  
Jean-Louis Bonne ◽  
Alexandre Cauquoin ◽  
Hans Christian Steen-Larsen

<p>Stable water isotopes are employed as hydrological tracers to quantify the diverse implications of atmospheric moisture for climate. In a recent study based on several years of in-situ isotope measurements in water vapour of the marine boundary layer it was shown that the isotope signal during evaporation is not modulated by wind speed, contrary to the commonly used theory, but controlled by relative humidity and sea surface temperature, only (Bonne et al., 2019). In sea ice covered regions, the sublimation of deposited snow on sea ice was found as another key process controlling the local water vapour isotopic composition. Here, we evaluate how these new findings will impact the stable water isotope signal both in vapour and precipitation on a global scale. For this purpose, the newly suggested parametrisations are included in two versions of the isotope-enabled atmospheric model ECHAM-wiso (Werner et al., 2016; Cauquoin et al., 2019) and a set of simulations is performed to disentangle the effects of the various controlling factors. Model results are evaluated against a compilation of short-term measurements of the isotopic composition in the marine boundary layer (Benetti et al., 2017), as well as data sets from several coastal stations (Steen-Larsen et al., 2014; 2015; 2017). In addition, the implications of the suggested parameterization changes for the interpretation of various isotope records in paleo-records will be discussed.</p>


2010 ◽  
Vol 40 (10) ◽  
pp. 2325-2332 ◽  
Author(s):  
Richard J. Foreman ◽  
Stefan Emeis

Abstract A new functional form of the neutral drag coefficient for moderate to high wind speeds in the marine atmospheric boundary layer for a range of field measurements as reported in the literature is proposed. This new form is found to describe a wide variety of measurements recorded in the open ocean, coast, fetch-limited seas, and lakes, with almost one and the same set of parameters. This is the result of a reanalysis of the definition of the drag coefficient in the marine boundary layer, which finds that a constant is missing from the traditional definition of the drag coefficient. The constant arises because the neutral friction velocity over water surfaces is not directly proportional to the 10-m wind speed, a consequence of the transition to rough flow at low wind speeds. Within the rough flow regime, the neutral friction velocity is linearly dependent on the 10-m wind speed; consequently, within this rough regime, the new definition of the drag coefficient is not a function of the wind speed. The magnitude of the new definition of the neutral drag coefficient represents an upper limit to the magnitude of the traditional definition.


2017 ◽  
Vol 56 (11) ◽  
pp. 2981-2998 ◽  
Author(s):  
Timothy W. Juliano ◽  
Thomas R. Parish ◽  
David A. Rahn ◽  
David C. Leon

AbstractAs part of the Precision Atmospheric Marine Boundary Layer Experiment, the University of Wyoming King Air sampled an atmospheric environment conducive to the formation of a hydraulic jump on 24 May 2012 off the coast of California. Strong, northwesterly flow rounded the Point Arguello–Point Conception complex and encountered the remnants of an eddy circulation in the Santa Barbara Channel. The aircraft flew an east–west vertical sawtooth pattern that captured a sharp thinning of the marine boundary layer and the downstream development of a hydraulic jump. In situ observations show a dramatic rise in isentropes and a coincident sudden decrease in wind speeds. Imagery from the Wyoming Cloud Lidar clearly depicts the jump feature via copolarization and depolarization returns. Estimations of MBL depth are used to calculate the upstream Froude number from hydraulic theory. Simulations using the Weather Research and Forecasting Model produced results in agreement with the observations. The innermost domain uses a 900-m horizontal grid spacing and encompasses the transition from supercritical to subcritical flow south of Point Conception. Upstream Froude number estimations from the model compare well to observations. A strongly divergent wind field, consistent with expansion fan dynamics, is present upwind of the hydraulic jump. The model accurately resolves details of the marine boundary layer collapse into the jump. Results from large-eddy simulations show a large increase in the turbulent kinetic energy field coincident with the hydraulic jump.


2020 ◽  
Author(s):  
Nadia Bloemendaal ◽  
Ivan Haigh ◽  
Hans de Moel ◽  
Sanne Muis ◽  
Jeroen Aerts

<p>Tropical cyclones (TCs), also referred to as hurricanes or typhoons, are amongst the deadliest and costliest natural disasters, affecting people, economies and the environment in coastal areas around the globe when they make landfall. In 2017, Hurricanes Harvey, Irma and Maria entered the top-5 costliest Atlantic hurricanes ever recorded, with combined losses estimated at $220 billion. Therefore, to minimize future loss of life and property and to aid risk mitigation efforts, it is crucial to perform accurate TC risk assessments in low-lying coastal regions. Calculating TC risk at a global scale, however, has proven to be difficult, given the limited temporal and spatial information on landfalling TCs around much of the global coastline.</p><p>In this research, we present a novel approach to calculate TC risk under present and future climate conditions on a global scale, using the newly developed Synthetic Tropical cyclOne geneRation Model (STORM). For this, we extract 38 years of historical data from the International Best-Track Archive for Climate Stewardship (IBTrACS). This dataset is used as input for the STORM algorithm to statistically extend this dataset from 38 years to 10,000 years of TC activity. Validation shows that the STORM dataset preserves the TC statistics as found on the original IBTrACS dataset. The STORM dataset is then used to calculate global-scale return periods of TC-induced wind speeds at 0.1°resolution. This return period dataset can then be used to assess the low probabilities of extreme events all around the globe. Moreover, we demonstrate the application of this dataset for TC risk modeling on small islands in e.g. the Caribbean or in the South Pacific Ocean.</p>


2010 ◽  
Vol 10 (5) ◽  
pp. 2377-2391 ◽  
Author(s):  
I. Sandu ◽  
B. Stevens ◽  
R. Pincus

Abstract. Satellite observations and meteorological reanalysis are used to examine the transition from unbroken sheets of stratocumulus to fields of scattered cumulus, and the processes controlling them, in four subtropical oceans. A Lagrangian analysis suggests that both the transition, defined as the temporal evolution in cloudiness, and the processes driving the transition, are quite similar among the subtropical oceans. The increase in sea surface temperature and the associated decrease in lower tropospheric stability appear to play a far more important role in cloud evolution than other factors including changes in large scale divergence and upper tropospheric humidity. During the summer months, the transitions in marine boundary layer cloudiness appear so systematically that their characteristics obtained by documenting the flow of thousands of individual air masses are well reproduced by the mean (or climatological) fields of the different data sets. This highlights interesting opportunities for future observational and modeling studies of these transitions.


2014 ◽  
Vol 7 (3) ◽  
pp. 2545-2584 ◽  
Author(s):  
K. C. Kaku ◽  
J. S. Reid ◽  
N. T. O'Neill ◽  
P. K. Quinn ◽  
D. J. Coffman ◽  
...  

Abstract. The Spectral Deconvolution Algorithm (SDA) and SDA+ (extended SDA) methodologies can be employed to separate the fine and coarse mode extinction coefficients from measured total aerosol extinction coefficients, but their common use is currently limited to AERONET Aerosol Optical Depth (AOD). Here we provide the verification of the SDA+ methodology on a non-AERONET aerosol product, by applying it to fine and coarse mode nephelometer and Particle Soot Absorption Photometer (PSAP) data sets collected in the marine boundary layer. Using datasets collected on research vessels by NOAA PMEL, we demonstrate that with accurate input, SDA+ is able to predict the fine and coarse mode scattering and extinction coefficient partition in global data sets representing a range of aerosol regimes. However, in low-extinction regimes commonly found in the clean marine boundary layer, SDA+ output accuracy is sensitive to instrumental calibration errors. This work was extended to the calculation of coarse and fine mode scattering coefficients with similar success. This effort not only verifies the application of the SDA+ method to in situ data, but by inference verifies the method as a whole for a host of applications, including AERONET. Study results open the door to much more extensive use of nephelometers and PSAPs, with the ability to calculate fine and coarse mode scattering and extinction coefficients in field campaigns that do not have the resources to explicitly measure these values.


2019 ◽  
Vol 19 (6) ◽  
pp. 4005-4024 ◽  
Author(s):  
Xiahong Feng ◽  
Eric S. Posmentier ◽  
Leslie J. Sonder ◽  
Naixin Fan

Abstract. We develop a one-dimensional (1-D) steady-state isotope marine boundary layer (MBL) model that includes meteorologically important features missing in models of the Craig and Gordon type, namely height-dependent diffusion and mixing, lifting to deliver air to the free troposphere, and convergence of subsiding air. Kinetic isotopic fractionation results from this height-dependent diffusion that starts as pure molecular diffusion at the air–water interface and increases with height due to turbulent eddies. Convergence causes mixing of dry, isotopically depleted air with ambient air. Model results fill a quadrilateral in δD–δ18O space, of which three boundaries are defined by (1) vapor in equilibrium with various sea surface temperatures (SSTs), (2) mixing of vapor in equilibrium with seawater and vapor in subsiding air, and (3) vapor that has experienced maximum possible kinetic fractionation. Model processes also cause variations in d-excess of MBL vapor. In particular, mixing of relatively high d-excess descending and converging air into the MBL increases d-excess, even without kinetic isotope fractionation. The model is tested by comparison with seven data sets of marine vapor isotopic ratios, with excellent correspondence. About 95 % of observational data fall within the quadrilateral predicted by the model. The distribution of observations also highlights the significant influence of vapor from nearby converging descending air on isotopic variations within the MBL. At least three factors may explain the ∼5 % of observations that fall slightly outside of the predicted regions in δD–δ18O and d-excess–δ18O space: (1) variations in seawater isotopic ratios, (2) variations in isotopic composition of subsiding air, and (3) influence of sea spray.


2006 ◽  
Vol 23 (12) ◽  
pp. 1629-1644 ◽  
Author(s):  
Feiqin Xie ◽  
Stig Syndergaard ◽  
E. Robert Kursinski ◽  
Benjamin M. Herman

Abstract The global positioning system (GPS) radio occultation (RO) technique has demonstrated the ability to precisely probe earth’s atmosphere globally with high vertical resolution. However, the lowermost troposphere still presents some challenges for the technique. Over moist marine areas, especially in subtropical regions, a very large negative moisture gradient often exists across the thermal inversion capping the marine boundary layer (MBL), which frequently causes superrefraction (SR), or ducting. In the presence of SR, the reconstruction of refractivity from RO data becomes an ill-posed inverse problem. This study shows that one given RO bending angle profile is consistent with a continuum (an infinite number) of refractivity profiles. The standard Abel retrieval gives the minimum refractivity solution of the continuum and thus produces the largest negative bias, consistent with a negative bias often present in the retrieved refractivity profiles in the moist lower troposphere. By applying a simple linear parameterization of the refractivity structure within and just below the SR layer, an analytical relation between the Abel-retrieved refractivity and a continuum of solutions is derived. Combining the Abel retrieval and the analytical relation with some physical constraints, a novel approach is developed to reconstruct the vertical refractivity structure within and below the SR layer. Numerical simulation studies in this paper have demonstrated the great potential of the reconstruction method to provide a much-improved retrieval in the presence of SR, and the method should greatly enhance the ability to measure the MBL structure globally using the GPS RO technique.


Sign in / Sign up

Export Citation Format

Share Document