Interactive comment on "Reconstruction and analysis of erythemal UV radiation time series from Hradec Králové (Czech Republic) over the past 50 years" by K. Čižková

2017 ◽  
Author(s):  
Anonymous
2017 ◽  
Author(s):  
Klára Čížková ◽  
Kamil Láska ◽  
Ladislav Metelka ◽  
Martin Staněk

Abstract. This paper evaluates the variability of erythemal ultraviolet (EUV) radiation from Hradec Králové (Czech Republic) in the period 1964–2013. The EUV radiation time series was reconstructed using a radiative transfer model and additional empirical relationships with the root mean square error of 9.9 %. The reconstructed time series documented the increase in EUV radiation doses in the 1980s and the 1990s (up to 15 % per decade), which is linked to the steep decline in total ozone (10 % per decade). The changes of cloud cover were the major factor affecting the EUV radiation doses especially in the 1960s, 1970s, and at the beginning of the new millennium. The mean annual EUV radiation doses in the decade 2004–2013 declined by 5 %. The factors affecting the EUV radiation doses differed also according to the chosen integration period (daily, monthly, and annually): solar zenith angle was the most important for daily doses, cloud cover for their monthly means, and the annual means of EUV radiation doses were most influenced by total ozone column. The number of days with very high EUV radiation doses increased by 22 % per decade, the increase was statistically significant in all seasons except autumn. The occurrence of the days with very high EUV doses was influenced mostly by low total ozone column (82 % of days), clear-sky or partly cloudy conditions (74 % of days) and by increased surface albedo (19 % of days). The principal component analysis documented that the occurrence of days with very high EUV radiation doses was much affected by the positive phase of North Atlantic Oscillation with an Azores High promontory reaching over central Europe. In the stratosphere, a strong Arctic circumpolar vortex and also the meridional inflow of ozone-poor air from the south-west were favorable for the occurrence of days with very high EUV radiation doses. This is the first analysis of the relationship between the high EUV radiation doses and macro-scale circulation patterns, and therefore more attention should be given also to other dynamical variables that may affect the solar UV radiation on the Earth surface.


2018 ◽  
Vol 18 (3) ◽  
pp. 1805-1818 ◽  
Author(s):  
Klára Čížková ◽  
Kamil Láska ◽  
Ladislav Metelka ◽  
Martin Staněk

Abstract. This paper evaluates the variability of erythemal ultraviolet (EUV) radiation from Hradec Králové (Czech Republic) in the period 1964–2013. The EUV radiation time series was reconstructed using a radiative transfer model and additional empirical relationships, with the final root mean square error of 9.9 %. The reconstructed time series documented the increase in EUV radiation doses in the 1980s and the 1990s (up to 15 % per decade), which was linked to the steep decline in total ozone (10 % per decade). The changes in cloud cover were the major factor affecting the EUV radiation doses especially in the 1960s, 1970s, and at the beginning of the new millennium. The mean annual EUV radiation doses in the decade 2004–2013 declined by 5 %. The factors affecting the EUV radiation doses differed also according to the chosen integration period (daily, monthly, and annually): solar zenith angle was the most important for daily doses, cloud cover, and surface UV albedo for their monthly means, and the annual means of EUV radiation doses were most influenced by total ozone column. The number of days with very high EUV radiation doses increased by 22 % per decade, the increase was statistically significant in all seasons except autumn. The occurrence of the days with very high EUV doses was influenced mostly by low total ozone column (82 % of days), clear-sky or partly cloudy conditions (74 % of days) and by increased surface albedo (19 % of days). The principal component analysis documented that the occurrence of days with very high EUV radiation doses was much affected by the positive phase of North Atlantic Oscillation with an Azores High promontory reaching over central Europe. In the stratosphere, a strong Arctic circumpolar vortex and the meridional inflow of ozone-poor air from the southwest were favorable for the occurrence of days with very high EUV radiation doses. This is the first analysis of the relationship between the high EUV radiation doses and macroscale circulation patterns, and therefore more attention should be given also to other dynamical variables that may affect the solar UV radiation on the Earth surface.


2012 ◽  
Vol 117 (D16) ◽  
pp. n/a-n/a ◽  
Author(s):  
J. Junk ◽  
U. Feister ◽  
A. Helbig ◽  
K. Görgen ◽  
E. Rozanov ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Els Weinans ◽  
Rick Quax ◽  
Egbert H. van Nes ◽  
Ingrid A. van de Leemput

AbstractVarious complex systems, such as the climate, ecosystems, and physical and mental health can show large shifts in response to small changes in their environment. These ‘tipping points’ are notoriously hard to predict based on trends. However, in the past 20 years several indicators pointing to a loss of resilience have been developed. These indicators use fluctuations in time series to detect critical slowing down preceding a tipping point. Most of the existing indicators are based on models of one-dimensional systems. However, complex systems generally consist of multiple interacting entities. Moreover, because of technological developments and wearables, multivariate time series are becoming increasingly available in different fields of science. In order to apply the framework of resilience indicators to multivariate time series, various extensions have been proposed. Not all multivariate indicators have been tested for the same types of systems and therefore a systematic comparison between the methods is lacking. Here, we evaluate the performance of the different multivariate indicators of resilience loss in different scenarios. We show that there is not one method outperforming the others. Instead, which method is best to use depends on the type of scenario the system is subject to. We propose a set of guidelines to help future users choose which multivariate indicator of resilience is best to use for their particular system.


2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Jesús García ◽  
Iván Portnoy ◽  
Ricardo Vasquez Padilla ◽  
Marco E. Sanjuan

Variation in direct solar radiation is one of the main disturbances that any solar system must handle to maintain efficiency at acceptable levels. As known, solar radiation profiles change due to earth's movements. Even though this change is not manipulable, its behavior is predictable. However, at ground level, direct solar radiation mainly varies due to the effect of clouds, which is a complex phenomenon not easily predictable. In this paper, dynamic solar radiation time series in a two-dimensional (2D) spatial domain are obtained using a biomimetic cloud-shading model. The model is tuned and compared against available measurement time series. The procedure uses an objective function based on statistical indexes that allow extracting the most important characteristics of an actual set of curves. Then, a multi-objective optimization algorithm finds the tuning parameters of the model that better fit data. The results showed that it is possible to obtain responses similar to real direct solar radiation transients using the biomimetic model, which is useful for other studies such as testing control strategies in solar thermal plants.


2015 ◽  
Vol 9 (6) ◽  
pp. 525-535 ◽  
Author(s):  
G. del C. Pizarro ◽  
O. G. Marambio ◽  
M. Jeria-Orell ◽  
C. M. Gonzalez-Henriquez ◽  
M. Sarabia-Vallejos ◽  
...  

2018 ◽  
Vol 617 ◽  
pp. A108 ◽  
Author(s):  
T. Appourchaux ◽  
P. Boumier ◽  
J. W. Leibacher ◽  
T. Corbard

Context. The recent claims of g-mode detection have restarted the search for these potentially extremely important modes. These claims can be reassessed in view of the different data sets available from the SoHO instruments and ground-based instruments. Aims. We produce a new calibration of the GOLF data with a more consistent p-mode amplitude and a more consistent time shift correction compared to the time series used in the past. Methods. The calibration of 22 yr of GOLF data is done with a simpler approach that uses only the predictive radial velocity of the SoHO spacecraft as a reference. Using p modes, we measure and correct the time shift between ground- and space-based instruments and the GOLF instrument. Results. The p-mode velocity calibration is now consistent to within a few percent with other instruments. The remaining time shifts are within ±5 s for 99.8% of the time series.


1991 ◽  
Vol 85 (3) ◽  
pp. 905-920 ◽  
Author(s):  
Harold D. Clarke ◽  
Nitish Dutt

During the past two decades a four-item battery administered in biannual Euro-Barometer surveys has been used to measure changing value priorities in Western European countries. We provide evidence that the measure is seriously flawed. Pooled cross-sectional time series analyses for the 1976–86 period reveal that the Euro-Barometer postmaterialist-materialist value index and two of its components are very sensitive to short-term changes in economic conditions, and that the failure to include a statement about unemployment in the four-item values battery accounts for much of the apparent growth of postmaterialist values in several countries after 1980. The aggregate-level findings are buttressed by analyses of panel data from three countries.


Sign in / Sign up

Export Citation Format

Share Document