scholarly journals Supplementary material to "Water adsorption and hygroscopic growth of six anemophilous pollen species: the effect of temperature"

Author(s):  
Mingjin Tang ◽  
Wenjun Gu ◽  
Qingxin Ma ◽  
Yong Jie Li ◽  
Cheng Zhong ◽  
...  
2019 ◽  
Vol 19 (4) ◽  
pp. 2247-2258 ◽  
Author(s):  
Mingjin Tang ◽  
Wenjun Gu ◽  
Qingxin Ma ◽  
Yong Jie Li ◽  
Cheng Zhong ◽  
...  

Abstract. Hygroscopicity largely affects environmental and climatic impacts of pollen grains, one important type of primary biological aerosol particles in the troposphere. However, our knowledge of pollen hygroscopicity is rather limited, and the effect of temperature in particular has rarely been explored before. In this work three different techniques, including a vapor sorption analyzer, diffusion reflectance infrared Fourier transform spectroscopy (DRIFTS) and transmission Fourier transform infrared spectroscopy (transmission FTIR) were employed to characterize six anemophilous pollen species and to investigate their hygroscopic properties as a function of relative humidity (RH, up to 95 %) and temperature (5 or 15, 25 and 37 ∘C). Substantial mass increase due to water uptake was observed for all the six pollen species, and at 25 ∘C the relative mass increase at 90 % RH, when compared to that at <1 % RH, ranged from ∼30 % to ∼50 %, varying with pollen species. It was found that the modified κ-Köhler equation can well approximate mass hygroscopic growth of all the six pollen species, and the single hygroscopicity parameter (κ) was determined to be in the range of 0.034±0.001 to 0.061±0.007 at 25 ∘C. In situ DRIFTS measurements suggested that water adsorption by pollen species was mainly contributed to by OH groups of organic compounds they contained, and good correlations were indeed found between hygroscopicity of pollen species and the number of OH groups, as determined using transmission FTIR. An increase in temperature would in general lead to a decrease in hygroscopicity, except for pecan pollen. For example, κ values decreased from 0.073±0.006 at 5 ∘C to 0.061±0.007 at 25 ∘C and to 0.057±0.004 at 37 ∘C for Populus tremuloides pollen, and decreased from 0.060±0.001 at 15 ∘C to 0.054±0.001 at 25 ∘C and 0.050±0.002 at 37 ∘C for paper mulberry pollen.


2018 ◽  
Author(s):  
Mingjin Tang ◽  
Wenjun Gu ◽  
Qingxin Ma ◽  
Yong Jie Li ◽  
Cheng Zhong ◽  
...  

Abstract. Hygroscopicity largely affects environmental and climatic impacts of pollen grains, one important type of primary biological aerosol particles in the troposphere. However, our knowledge in pollen hygroscopicity is rather limited, and especially the effect of temperature has rarely been explored before. In this work three different techniques, including a vapor sorption analyzer, diffusion reflectance infrared Fourier transform spectroscopy (DRIFTS) and transmission Fourier transform infrared spectroscopy (transmission FTIR) were employed to characterize six anemophilous pollen species and to investigate their hygroscopic properties as a function of relative humidity (RH, up to 95 %) and temperature (5 or 15, 25 and 37 °C). Substantial mass increase due to water uptake was observed for all the six pollen species, and at 25 °C the relative mass increase at 90 % RH, when compared to that at


2017 ◽  
Vol 10 (10) ◽  
pp. 3821-3832 ◽  
Author(s):  
Wenjun Gu ◽  
Yongjie Li ◽  
Jianxi Zhu ◽  
Xiaohong Jia ◽  
Qinhao Lin ◽  
...  

Abstract. Water adsorption and hygroscopicity are among the most important physicochemical properties of aerosol particles, largely determining their impacts on atmospheric chemistry, radiative forcing, and climate. Measurements of water adsorption and hygroscopicity of nonspherical particles under subsaturated conditions are nontrivial because many widely used techniques require the assumption of particle sphericity. In this work we describe a method to directly quantify water adsorption and mass hygroscopic growth of atmospheric particles for temperature in the range of 5–30 °C, using a commercial vapor sorption analyzer. A detailed description of instrumental configuration and experimental procedures, including relative humidity (RH) calibration, is provided first. It is then demonstrated that for (NH4)2SO4 and NaCl, deliquescence relative humidities and mass hygroscopic growth factors measured using this method show good agreements with experimental and/or theoretical data from literature. To illustrate its ability to measure water uptake by particles with low hygroscopicity, we used this instrument to investigate water adsorption by CaSO4 ⋅ 2H2O as a function of RH at 25 °C. The mass hygroscopic growth factor of CaSO4 ⋅ 2H2O at 95 % RH, relative to that under dry conditions (RH  < 1 %), was determined to be (0.450±0.004) % (1σ). In addition, it is shown that this instrument can reliably measure a relative mass change of 0.025 %. Overall, we have demonstrated that this commercial instrument provides a simple, sensitive, and robust method to investigate water adsorption and hygroscopicity of atmospheric particles.


1986 ◽  
Vol 51 (2) ◽  
pp. 381-383 ◽  
Author(s):  
G. D. SARAVACOS ◽  
D. A. TSIOURVAS ◽  
E. TSAMI

2017 ◽  
Author(s):  
Wenjun Gu ◽  
Yongjie Li ◽  
Jianxi Zhu ◽  
Xiaohong Jia ◽  
Qinhao Lin ◽  
...  

Abstract. Water adsorption and hygroscopicity are among the most important physicochemical properties of aerosol particles, largely determining their impacts on atmospheric chemistry, radiative forcing, and climate. Measurements of water adsorption and hygroscopicity of nonspherical particles under subsaturation conditions are non-trivial because many widely used techniques require the assumption of particle sphericity. In this work we describe a method to directly quantify water adsorption and mass hygroscopic growth of atmospheric particles for temperature in the range of 5–30 °C, using a commercial vapor sorption analyzer. A detailed description of instrumental configuration and experimental procedures, including relative humidity (RH) calibration, are provided first. It is then demonstrated that for (NH4)2SO4 and NaCl, deliquescence relative humidities (DRHs) and mass hygroscopic growth factors measured using this method show good agreements with experimental and/or theoretical data from literature. To illustrate its ability to measure water uptake by particles with low hygroscopicity, we used this instrument to investigate water adsorption by CaSO4 ∙ 2H2O as a function of RH at 25 °C. The mass hygroscopic growth factor of CaSO4 ∙ 2H2O at 95 % RH, relative to that under dry conditions (RH 


Sign in / Sign up

Export Citation Format

Share Document