scholarly journals Peroxy Radical Measurements by Ethane – Nitric Oxide Chemical Amplification and Laser-Induced Fluorescence/Fluorescence Assay by Gas Expansion during the IRRONIC field campaign in a Forest in Indiana

Author(s):  
Shuvashish Kundu ◽  
Benjamin L. Deming ◽  
Michelle M. Lew ◽  
Brandon P. Bottorff ◽  
Pamela Rickly ◽  
...  

Abstract. Peroxy radicals were measured in a mixed deciduous forest atmosphere in Bloomington, Indiana, USA, during the Indiana Radical, Reactivity and Ozone Production Intercomparison (IRRONIC) during the summer of 2015. Total peroxy radicals ([XO2] ≡ [HO2] + Ʃ[RO2]) were measured by a newly developed technique involving nitric oxide (NO) – ethane (C2H6) chemical amplification followed by NO2 detection by cavity attenuated phase shift spectroscopy (hereinafter referred to as ECHAMP). The sum of hydroperoxy radicals (HO2) and a portion of organic peroxy radicals ([HO2*] = [HO2] + Ʃαi[RiO2], 0 

2019 ◽  
Vol 19 (5) ◽  
pp. 2845-2860 ◽  
Author(s):  
Daniel C. Anderson ◽  
Jessica Pavelec ◽  
Conner Daube ◽  
Scott C. Herndon ◽  
Walter B. Knighton ◽  
...  

Abstract. Observations of total peroxy radical concentrations ([XO2] ≡ [RO2] + [HO2]) made by the Ethane CHemical AMPlifier (ECHAMP) and concomitant observations of additional trace gases made on board the Aerodyne Mobile Laboratory (AML) during May 2017 were used to characterize ozone production at three sites in the San Antonio, Texas, region. Median daytime [O3] was 48 ppbv at the site downwind of central San Antonio. Higher concentrations of NO and XO2 at the downwind site also led to median daytime ozone production rates (P(O3)) of 4.2 ppbv h−1, a factor of 2 higher than at the two upwind sites. The 95th percentile of P(O3) at the upwind site was 15.1 ppbv h−1, significantly lower than values observed in Houston. In situ observations, as well as satellite retrievals of HCHO and NO2, suggest that the region was predominantly NOx-limited. Only approximately 20 % of observations were in the VOC-limited regime, predominantly before 11:00 EST, when ozone production was low. Biogenic volatile organic compounds (VOCs) comprised 55 % of total OH reactivity at the downwind site, with alkanes and non-biogenic alkenes responsible for less than 10 % of total OH reactivity in the afternoon, when ozone production was highest. To control ozone formation rates at the three study sites effectively, policy efforts should be directed at reducing NOx emissions. Observations in the urban center of San Antonio are needed to determine whether this policy is true for the entire region.


The Analyst ◽  
2016 ◽  
Vol 141 (20) ◽  
pp. 5870-5878 ◽  
Author(s):  
Yang Chen ◽  
Chengqiang Yang ◽  
Weixiong Zhao ◽  
Bo Fang ◽  
Xuezhe Xu ◽  
...  

The chemical amplification method is combined with the incoherent broadband cavity-enhanced absorption spectroscopy for peroxy radical measurements.


2006 ◽  
Vol 6 (8) ◽  
pp. 2193-2214 ◽  
Author(s):  
Z. L. Fleming ◽  
P. S. Monks ◽  
A. R. Rickard ◽  
D. E. Heard ◽  
W. J. Bloss ◽  
...  

Abstract. Peroxy radical (HO2+ΣRO2) measurements, using the PEroxy Radical Chemical Amplification (PERCA) technique at the North Atlantic Marine Boundary Layer EXperiment (NAMBLEX) at Mace Head in summer 2002, are presented and put into the context of marine, boundary-layer chemistry. A suite of other chemical parameters (NO, NO2, NO3, CO, CH4, O3, VOCs, peroxides), photolysis frequencies and meteorological measurements, are used to present a detailed analysis of the role of peroxy radicals in tropospheric oxidation cycles and ozone formation. Under the range of conditions encountered the peroxy radical daily maxima varied from 10 to 40 pptv. The diurnal cycles showed an asymmetric shape typically shifted to the afternoon. Using a box model based on the master chemical mechanism the average model measurement agreement was 2.5 across the campaign. The addition of halogen oxides to the model increases the level of model/measurement agreement, apparently by respeciation of HOx. A good correlation exists between j(HCHO).[HCHO] and the peroxy radicals indicative of the importance of HCHO in the remote atmosphere as a HOx source, particularly in the afternoon. The peroxy radicals showed a strong dependence on [NO2] with a break point at 0.1 ppbv, where the radicals increased concomitantly with the reactive VOC loading, this is a lower value than seen at representative urban campaigns. The HO2/(HO2+ΣRO2) ratios are dependent on [NOx] ranging between 0.2 and 0.6, with the ratio increasing linearly with NOx. Significant night-time levels of peroxy radicals were measured up to 25 pptv. The contribution of ozone-alkenes and NO3-alkene chemistry to night-time peroxy radical production was shown to be on average 59 and 41%. The campaign mean net ozone production rate was 0.11±0.3 ppbv h-1. The ozone production rate was strongly dependent on [NO] having linear sensitivity (dln(P(O3))/dln(NO)=1.0). The results imply that the N(O3) (the in-situ net photochemical rate of ozone production/destruction) will be strongly sensitive in the marine boundary layer to small changes in [NO] which has ramifications for changing NOx loadings in the European continental boundary layer.


2007 ◽  
Vol 7 (1) ◽  
pp. 167-181 ◽  
Author(s):  
K. M. Emmerson ◽  
N. Carslaw ◽  
D. C. Carslaw ◽  
J. D. Lee ◽  
G. McFiggans ◽  
...  

Abstract. The Tropospheric ORganic CHemistry experiment (TORCH) took place during the heatwave of summer 2003 at Writtle College, a site 2 miles west of Chelmsford in Essex and 25 miles north east of London. The experiment was one of the most highly instrumented to date. A combination of a large number of days of simultaneous, collocated measurements, a consequent wealth of model constraints and a highly detailed chemical mechanism, allowed the atmospheric chemistry of this site to be studied in detail. Between 25 July and 31 August, the concentrations of the hydroxyl radical and the hydroperoxy radical were measured using laser-induced fluorescence at low pressure and the sum of peroxy radicals was measured using the peroxy radical chemical amplifier technique. The concentrations of the radical species were predicted using a zero-dimensional box model based on the Master Chemical Mechanism version 3.1, which was constrained with the observed concentrations of relatively long-lived species. The model included a detailed parameterisation to account for heterogeneous loss of hydroperoxy radicals onto aerosol particles. Quantile-quantile plots were used to assess the model performance in respect of the measured radical concentrations. On average, measured hydroxyl radical concentrations were over-predicted by 24%. Modelled and measured hydroperoxy radical concentrations agreed very well, with the model over-predicting on average by only 7%. The sum of peroxy radicals was under-predicted when compared with the respective measurements by 22%. Initiation via OH was dominated by the reactions of excited oxygen atoms with water, nitrous acid photolysis and the ozone reaction with alkene species. Photolysis of aldehyde species was the main route for initiation via HO2 and RO2. Termination, under all conditions, primarily involved reactions with NOx for OH and heterogeneous chemistry on aerosol surfaces for HO2. The OH chain length varied between 2 and 8 cycles, the longer chain lengths occurring before and after the most polluted part of the campaign. Peak local ozone production of 17 ppb hr−1 occurred on 3 and 5 August, signifying the importance of local chemical processes to ozone production on these days. On the whole, agreement between model and measured radicals is good, giving confidence that our understanding of atmospheres influenced by nearby urban sources is adequate.


2005 ◽  
Vol 5 (6) ◽  
pp. 12313-12371 ◽  
Author(s):  
Z. L. Fleming ◽  
P. S. Monks ◽  
A. R. Rickard ◽  
D. E. Heard ◽  
W. J. Bloss ◽  
...  

Abstract. Peroxy radical (HO2+ΣRO2) measurements, using the PEroxy Radical Chemical Amplification (PERCA) technique at the North Atlantic Marine Boundary Layer EXperiment (NAMBLEX) at Mace Head in summer 2002, are presented and put into the context of marine, boundary-layer chemistry. A suite of other chemical parameters (NO, NO2, NO3, CO, CH4, O3, VOCs, peroxides), photolysis frequencies and meteorological measurements, are used to present a detailed analysis of the role of peroxy radicals in tropospheric oxidation cycles and ozone formation. Under the range of conditions encountered the peroxy radical daily maxima varied from 10 to 40 pptv. The diurnal cycles showed an asymmetric shape typically shifted to the afternoon. Using a box model based on the master chemical mechanism the average model measurement agreement was 2.5 across the campaign. The addition of halogen oxides to the model increases the level of model/measurement agreement, apparently by respeciation of HOx. A good correlation exists between j(HCHO).[HCHO] and the peroxy radicals indicative of the importance of HCHO in the remote atmosphere as a HOx source, particularly in the afternoon. The peroxy radicals showed a strong dependence on [NOx] with a break point at 0.1 ppbv, where the radicals increased concomitantly with the reactive VOC loading, this is a lower value than seen at representative urban campaigns. The HO2/(HO2+ΣRO2) ratios are dependent on [NOx] ranging between 0.2 and 0.6, with the ratio increasing linearly with NOx. Significant night-time levels of peroxy radicals were measured up to 25 pptv. The contribution of ozone-alkenes and NO3-alkene chemistry to night-time peroxy radical production was shown to be on average 59 and 41%. The campaign mean net ozone production rate was 0.11±0.3 ppbv h−1. The ozone production rate was strongly dependent on [NO] having linear sensitivity (dln(P(O3))/dln(NO)=1.0). The results imply that the N(O3) (the in-situ net photochemical rate of ozone production/destruction) will be strongly sensitive in the marine boundary layer to small changes in [NO] which has ramifications for changing NOx loadings in the European continental boundary layer.


2006 ◽  
Vol 6 (4) ◽  
pp. 7235-7284
Author(s):  
Z. L. Fleming ◽  
P. S. Monks ◽  
A. R. Rickard ◽  
B. J. Bandy ◽  
N. Brough ◽  
...  

Abstract. Peroxy radicals (HO2+ΣRO2) were measured at the Weybourne Atmospheric Observatory (52° N, 1° E), Norfolk using a PEroxy Radical Chemical Amplifier (PERCA) during the winter and summer of 2002. The peroxy radical diurnal cycles showed a marked difference between the winter and summer campaigns with maximum concentrations of 12 pptv at midday in the summer and maximum concentrations as high as 30 pptv (10 min averages) in winter at night. The corresponding nighttime peroxy radical concentrations were not as high in summer (3 pptv). The peroxy radical concentration shows a distinct anti-correlation with increasing NOx during the daylight hours. At night, peroxy radicals increase with increasing NOx indicative of the role of NO3 chemistry. The average diurnal cycles for net ozone production, N(O3) show a large variability in ozone production, P(O3), and a large ozone loss, L(O3) in summer relative to winter. For a daylight average, net ozone production in summer than winter (1.51±0.5 ppbv h−1 and 1.11±0.47 ppbv h−1 respectively) but summer shows more variability of (meteorological) conditions than winter. The variability in NO concentration has a much larger effect on N(O3) than the peroxy radical concentrations. Photostationary state (PSS) calculations show an NO2 lifetime of 5 min in summer and 21 min in the winter, implying that steady-state NO-NO2 ratios are not always attained during the winter months. The results show an active peroxy radical chemistry at night and the ability of winter to make oxidant. The net effect of this with respect to production of ozone in winter is unclear owing to the breakdown in the photostationary state.


2021 ◽  
Author(s):  
Weidong Chen ◽  
Gaoxuan Wang ◽  
Ahmad Lahib ◽  
Marius Duncianu ◽  
Qian Gou ◽  
...  

<p>Peroxy radicals (HO<sub>2</sub>+RO<sub>2</sub>) are crucial intermediates in many key atmospheric processes and contribute to the formation of major air pollutants, such as ozone and secondary organic aerosols<sup>1</sup>. Due to their high reactivity and their extremely low concentrations (typically <100 pptv), in-situ real time and interference-free measurements of peroxy radicals remain challenging. In the present work, photoacoustic spectroscopy (PAS)<sup>2</sup> is applied, for the first time to our best knowledge, to the measurements of peroxy radicals with the help of the well established chemical amplification approach. Peroxy radical chemical amplification (PERCA)<sup>3</sup> is based on chemical conversion of peroxy randicals into NO<sub>2</sub> and followed by chemical amplification to achieve the necessary measurement sensitivity for the measurement of atmospheric peroxy radical concentration. The resulting NO<sub>2</sub> concentration is measured by PAS to infer the total concentration of peroxy radicals. The performance of the developed PERCA-PAS approach was demonstrated with a reference ECHAMP chemical amplification system using cavity attenuated phase shift spectroscopy (CAPS) for NO<sub>2</sub> monitoring. The determined amplification gains (referred to as chain length, CL) of the ECHAMP system using PAS are well consistent with the values determined using CAPS. A 1-σ limit of detection of ~12 pptv for peroxy radicals was achieved in an integration time of 90 s at a relative humidity of about 9.8%. The detection limit of the current ECHAMP-PAS system can be further improved by using higher laser power and increasing the number of microphones in the photoacoustic spectrophone, which would allow reaching sub-pptv detection limits for the measurements of peroxy radicals in the atmosphere.</p><p>This work provides a promising technique to develop novel compact and very cost-effective (compared to all methods currently used) sensors, which will allow readily developing network measurements and investigation of the spatial distribution of peroxy radicals in the atmosphere.</p><p><strong>Acknowledgments. </strong>This work is supported by the French national research agency (ANR) under MABCaM and LABEX-CaPPA contracts, the European Funds for Regional Economic Development through the CaPPA project, the CPER-CLIMIBIO program, the LEFE/CHAT INSU program. It is also supported by the National Natural Science Foundation of China (22073013), Natural Science Foundation of Chongqing (cstc2018jcyjAX0050) and Fundamental Research Funds for the Central Universities (2020CDJXZ002).</p><p><strong>Reference</strong></p><p>[1] J. J. Orlando, G. S. Tyndall, Laboratory studies of organic peroxy radical chemistry: an overview with emphasis on recent issues of atmospheric significance, Chem. Soc. Rev. <strong>41</strong>(2012) 6294-6317.</p><p>[2] W. Chen et al., Photonic Sensing of reactive atmospheric species, in Encyclopedia of Analytical Chemistry © 2017 John Wiley & Sons, Ltd. DOI: 10.1002/9780470027318.a9432.</p><p>[3] C. Cantrell, D. Stedman, A possible technique for the measurement of atmospheric peroxy radicals, Geophys. Res. Lett. <strong>9</strong> (1982) 846-849.</p>


2014 ◽  
Vol 14 (6) ◽  
pp. 2789-2804 ◽  
Author(s):  
J. Wildt ◽  
T. F. Mentel ◽  
A. Kiendler-Scharr ◽  
T. Hoffmann ◽  
S. Andres ◽  
...  

Abstract. The impact of nitrogen oxides (NOx = NO + NO2) on new particle formation (NPF) and on photochemical ozone production from real plant volatile organic compound (BVOC) emissions was studied in a laboratory setup. At high NOx conditions ([BVOC] / [NOx] < 7, [NOx] > 23 ppb) new particle formation was suppressed. Instead, photochemical ozone formation was observed resulting in higher hydroxyl radical (OH) and lower nitrogen monoxide (NO) concentrations. When [NO] was reduced back to levels below 1 ppb by OH reactions, NPF was observed. Adding high amounts of NOx caused NPF to be slowed by orders of magnitude compared to analogous experiments at low NOx conditions ([NOx] ~300 ppt), although OH concentrations were higher. Varying NO2 photolysis enabled showing that NO was responsible for suppression of NPF. This suggests that peroxy radicals are involved in NPF. The rates of NPF and photochemical ozone production were related by power law dependence with an exponent approaching −2. This exponent indicated that the overall peroxy radical concentration must have been similar when NPF occurred. Thus, permutation reactions of first-generation peroxy radicals cannot be the rate limiting step in NPF from monoterpene oxidation. It was concluded that permutation reactions of higher generation peroxy-radical-like intermediates limit the rate of new particle formation. In contrast to the strong effects on the particle numbers, the formation of particle mass was substantially less sensitive to NOx concentrations. If at all, yields were reduced by about an order of magnitude only at very high NOx concentrations.


2011 ◽  
Vol 11 (6) ◽  
pp. 2471-2485 ◽  
Author(s):  
R. Sommariva ◽  
S. S. Brown ◽  
J. M. Roberts ◽  
D. M. Brookes ◽  
A. E. Parker ◽  
...  

Abstract. During the Texas Air Quality Study II (TexAQS 2006) campaign, a PEroxy Radical Chemical Amplifier (PERCA) was deployed on the NOAA research vessel R/V Brown to measure total peroxy radicals (HO2+Σ RO2). Day-time mixing ratios of HO2+Σ RO2 between 25 and 110 ppt were observed throughout the study area – the Houston/Galveston region and the Gulf coast of the US – and analyzed in relation to measurements of nitrogen oxides, volatile organic compounds (VOC) and photolysis rates to assess radical sources and sinks in the region. The measurements of HO2+Σ RO2 were used to calculate the in-situ net photochemical formation of ozone. Measured median values ranged from 0.6 ppb/h in clean oceanic air masses up to several tens of ppb/h in the most polluted industrial areas. The results are consistent with previous studies and generally agree with observations made during the previous TexAQS 2000 field campaign. The net photochemical ozone formation rates determined at Barbours Cut, a site immediately south of the Houston Ship Channel, were analyzed in relation to local wind direction and VOC reactivity to understand the relationship between ozone formation and local VOC emissions. The measurements of HO2+Σ RO2 made during the R/V Brown TexAQS 2006 cruise indicate that ozone formation is NOx-limited in the Houston/Galveston region and influenced by highly reactive hydrocarbons, especially alkenes from urban and industrial sources and their photo-oxidation products, such as formaldehyde.


Sign in / Sign up

Export Citation Format

Share Document