Review of Influence of cloud microphysical processes on black carbon wet removal, global distributions, and radiative forcing

2018 ◽  
Author(s):  
Anonymous
2018 ◽  
Author(s):  
Jiayu Xu ◽  
Jiachen Zhang ◽  
Junfeng Liu ◽  
Kan Yi ◽  
Songlin Xiang ◽  
...  

Abstract. Parameterizations that impact wet removal of black carbon remain uncertain in global climate models. In this study, we enhance the default wet deposition scheme for BC in the Community Earth System Model (CESM) to (a) add relevant physical processes that were not resolved in the default model, and (b) facilitate understanding of the relative importance of various cloud processes on BC distributions. We find that the enhanced scheme greatly improves model performance against HIPPO observations relative to the default scheme. We find that convection scavenging, aerosol activation, ice nucleation, evaporation of rain/snow, and below cloud scavenging dominate wet deposition of BC. BC conversion rates for processes related to in-cloud water/ice conversion (i.e., riming, the Bergeron processes, and evaporation of cloud water sedimentation) are relatively smaller, but have large seasonal variations. We also conduct sensitivity simulations that turn off each cloud process one at a time to quantify the influence of cloud processes on BC distributions and radiative forcing. Convective scavenging is found to most significantly influence BC concentrations at mid-altitudes over the tropics and even globally. In addition, BC is sensitive to all cloud processes over the Northern Hemisphere at high latitudes. As for BC vertical distributions, convective scavenging has a dominant influence. Aerosol activation mainly increases the fraction of column BC below 5 km whereas ice nucleation decreases that above 10 km. During wintertime, the Bergeron process also significantly increases BC concentrations at lower altitudes over the Arctic. Our simulation yields a global BC burden of 85 Gg; corresponding direct radiative forcing (DRF) of BC estimated using the Parallel Offline Radiative Transfer (PORT) is 0.13 W m−2, much lower than previous studies. The range of DRF derived from sensitivity simulations is large, 0.09–0.33 W m−2, corresponding to BC burdens varying from 73 Gg to 151 Gg. Due to differences in BC vertical distributions among each sensitivity simulation, fractional changes in DRF (relative to the baseline simulation) are always higher than fractional changes in BC burdens; this occurs because relocating BC in the vertical influences the radiative forcing per BC mass. Our results highlight the influences of cloud microphysical processes on BC concentrations and radiative forcing.


2019 ◽  
Vol 19 (3) ◽  
pp. 1587-1603 ◽  
Author(s):  
Jiayu Xu ◽  
Jiachen Zhang ◽  
Junfeng Liu ◽  
Kan Yi ◽  
Songlin Xiang ◽  
...  

Abstract. Parameterizations that impact wet removal of black carbon (BC) remain uncertain in global climate models. In this study, we enhance the default wet deposition scheme for BC in the Community Earth System Model (CESM) to (a) add relevant physical processes that were not resolved in the default model and (b) facilitate understanding of the relative importance of various cloud processes on BC distributions. We find that the enhanced scheme greatly improves model performance against HIPPO observations relative to the default scheme. We find that convection scavenging, aerosol activation, ice nucleation, evaporation of rain or snow, and below-cloud scavenging dominate wet deposition of BC. BC conversion rates for processes related to in-cloud water–ice conversion (i.e., riming, the Bergeron process, and evaporation of cloud water sedimentation) are relatively smaller, but have large seasonal variations. We also conduct sensitivity simulations that turn off each cloud process one at a time to quantify the influence of cloud processes on BC distributions and radiative forcing. Convective scavenging is found to have the largest impact on BC concentrations at mid-altitudes over the tropics and even globally. In addition, BC is sensitive to all cloud processes over the Northern Hemisphere at high latitudes. As for BC vertical distributions, convective scavenging greatly influences BC fractions at different altitudes. Suppressing BC droplet activation in clouds mainly decreases the fraction of column BC below 5 km, whereas suppressing BC ice nucleation increases that above 10 km. During wintertime, the Bergeron process also significantly increases BC concentrations at lower altitudes over the Arctic. Our simulation yields a global BC burden of 85 Gg; corresponding direct radiative forcing (DRF) of BC estimated using the Parallel Offline Radiative Transfer (PORT) is 0.13 W m−2, much lower than previous studies. The range of DRF derived from sensitivity simulations is large, 0.09–0.33 W m−2, corresponding to BC burdens varying from 73 to 151 Gg. Due to differences in BC vertical distributions among each sensitivity simulation, fractional changes in DRF (relative to the baseline simulation) are always higher than fractional changes in BC burdens; this occurs because relocating BC in the vertical influences the radiative forcing per BC mass. Our results highlight the influences of cloud microphysical processes on BC concentrations and radiative forcing.


2012 ◽  
Vol 117 (D3) ◽  
pp. n/a-n/a ◽  
Author(s):  
N. Oshima ◽  
Y. Kondo ◽  
N. Moteki ◽  
N. Takegawa ◽  
M. Koike ◽  
...  

2014 ◽  
Vol 14 (24) ◽  
pp. 13755-13771 ◽  
Author(s):  
J. W. Taylor ◽  
J. D. Allan ◽  
G. Allen ◽  
H. Coe ◽  
P. I. Williams ◽  
...  

Abstract. Wet deposition is the dominant mechanism for removing black carbon (BC) from the atmosphere and is key in determining its atmospheric lifetime, vertical gradient and global transport. Despite the importance of BC in the climate system, especially in terms of its ability to modulate the radiative energy budget, there are few quantitative case studies of wet removal in ambient environments. We present a case study of BC wet removal by examining aerosol size distributions and BC coating properties sampled in three Canadian boreal biomass burning plumes, one of which passed through a precipitating cloud. This depleted the majority of the plume's BC mass, and the largest and most coated BC-containing particles were found to be preferentially removed, suggesting that nucleation scavenging was likely the dominant mechanism. Calculated single-scattering albedo (SSA) showed little variation, as a large number of non-BC particles were also present in the precipitation-affected plume. The remaining BC cores were smaller than those observed in previous studies of BC in post-precipitation outflow over Asia, possibly due to the thick coating by hydrophilic compounds associated with the Canadian biomass burning particles. This study provides measurements of BC size, mixing state and removal efficiency to constrain model parameterisations of BC wet removal in biomass burning regions, which will help to reduce uncertainty in radiative forcing calculations.


2014 ◽  
Vol 14 (13) ◽  
pp. 19469-19513 ◽  
Author(s):  
J. W. Taylor ◽  
J. D. Allan ◽  
G. Allen ◽  
H. Coe ◽  
P. I. Williams ◽  
...  

Abstract. Wet deposition is the dominant mechanism for removing black carbon (BC) from the atmosphere, and is key in determining its atmospheric lifetime, vertical gradient and global transport. Despite the importance of BC in the climate system, especially in terms of its ability to modulate the radiative energy budget, there are few quantitative case studies of wet removal in ambient environments. We present a case study of BC wet removal by examining aerosol size distributions and BC coating properties sampled in three Canadian boreal biomass burning plumes, one of which passed through a precipitating cloud. In this plume, the largest and most coated BC particles were found to be preferentially removed, suggesting that nucleation scavenging was the likely dominant mechanism. Calculated mass absorption coefficient (MAC) in the plumes showed no significant variation, as the shifts to smaller BC cores and thinner coatings had opposing effects. Similarly, calculated single-scatter albedo (SSA) showed little variation, as a large number of non-BC particles were also present in the precipitation-affected plume. The remaining BC cores were smaller than those observed in previous studies of BC in post-precipitation outflow over Asia, possibly due to the thick coatings associated with the biomass burning particles. This study provides important constraints to model parameterisations of BC wet removal in biomass burning regions, which will help to reduce uncertainty in radiative forcing calculations.


2021 ◽  
pp. 1-42
Author(s):  
Hitoshi Matsui ◽  
Mingxu Liu

AbstractBlack carbon (BC) aerosol particles in the Arctic heat the atmosphere and snow/ice surfaces and may strengthen the snow-albedo feedback that amplifies Arctic warming. Model simulations of BC concentrations in the Arctic depend strongly on the representation of microphysical processes such as aging, activation, and wet removal. Most BC modeling studies have classified BC particles into hydrophobic BC, which cannot form cloud droplets, and hydrophilic BC, which can form cloud droplets, by assuming a globally constant critical supersaturation threshold value (Sthre), without considering its consistency with cloud maximum supersaturation (Smax). Here we show that it is essential to consider the consistency of Sthre with Smax in global model simulations to reduce uncertainties in near-surface ambient BC concentrations in the Arctic. Previous studies often obtained good agreement between simulated and observed near-surface Arctic BC mass concentrations when a low Sthre (~0.1%) was assumed in their models. However, this Sthre may be too low (activation and wet removal of BC may be underestimated) for the Arctic, because some recent observations and our model simulations suggest that Smax may actually be higher (~0.3%) there. We also demonstrate that spatially varying Sthre values and their consistency with Smax, which previous studies did not consider, must be represented in models for more accurate estimation of BC budget in the Arctic. Because both Smax and BC-aging speed depend on climatic conditions, our findings are an important step toward better simulations of BC impacts on past, present, and future Arctic climates.


Sign in / Sign up

Export Citation Format

Share Document