scholarly journals Low-level mixed-phase clouds in a complex Arctic environment

Author(s):  
Rosa Gierens ◽  
Stefan Kneifel ◽  
Matthew D. Shupe ◽  
Kerstin Ebell ◽  
Marion Maturilli ◽  
...  

Abstract. Low-level mixed-phase clouds (MPC) are common in the Arctic. Both local and large scale phenomena influence the properties and lifetime of MPC. Arctic fjords are characterized by complex terrain and large variations in surface properties. Yet, not many studies have investigated the impact of local boundary layer dynamics and their relative importance on MPC in the fjord environment. In this work, we used a combination of ground-based remote sensing instruments, surface meteorological observations, radiosoundings, and reanalysis data to study persistent low-level MPC at Ny Ålesund, Svalbard, for a 2.5 year period. Methods to identify the cloud regime, surface coupling, as well as regional and local wind patterns were developed. We found that persistent MPCs were most common with westerly winds, and the westerly clouds had a higher mean liquid (42 g m−2) and ice water path (16 g m−2) compared to the overall mean of 35 and 12 g m−2, respectively. Most of the studied MPCs were decoupled from the surface (63–82 % of the time). The coupled clouds had 41 % higher liquid water path than the fully decoupled ones. Local winds in the fjord were related to the frequency of surface coupling, and we propose that katabatic winds from the glaciers in the vicinity of the station may cause clouds to decouple. Furthermore, the near surface wind direction from the open sea was related to higher amounts of cloud liquid, and higher likelihood of coupling.We concluded that while the regional to large scale wind direction was important for the persistent MPC occurrence and its properties, also the local scale phenomena (local wind patterns in the fjord and surface coupling) had an influence. Moreover, this suggests that local boundary layer processes should be described in models in order to present low-level MPC properties accurately.

2020 ◽  
Vol 20 (6) ◽  
pp. 3459-3481 ◽  
Author(s):  
Rosa Gierens ◽  
Stefan Kneifel ◽  
Matthew D. Shupe ◽  
Kerstin Ebell ◽  
Marion Maturilli ◽  
...  

Abstract. Low-level mixed-phase clouds (MPCs) are common in the Arctic. Both local and large-scale phenomena influence the properties and lifetime of MPCs. Arctic fjords are characterized by complex terrain and large variations in surface properties. Yet, not many studies have investigated the impact of local boundary layer dynamics and their relative importance on MPCs in the fjord environment. In this work, we used a combination of ground-based remote sensing instruments, surface meteorological observations, radiosoundings, and reanalysis data to study persistent low-level MPCs at Ny-Ålesund, Svalbard, for a 2.5-year period. Methods to identify the cloud regime, surface coupling, and regional and local wind patterns were developed. We found that persistent low-level MPCs were most common with westerly winds, and the westerly clouds had a higher mean liquid (42 g m−2) and ice water path (16 g m−2) compared to those with easterly winds. The increased height and rarity of persistent MPCs with easterly free-tropospheric winds suggest the island and its orography have an influence on the studied clouds. Seasonal variation in the liquid water path was found to be minimal, although the occurrence of persistent MPCs, their height, and their ice water path all showed notable seasonal dependency. Most of the studied MPCs were decoupled from the surface (63 %–82 % of the time). The coupled clouds had 41 % higher liquid water path than the fully decoupled ones. Local winds in the fjord were related to the frequency of surface coupling, and we propose that katabatic winds from the glaciers in the vicinity of the station may cause clouds to decouple. We concluded that while the regional to large-scale wind direction was important for the persistent MPC occurrence and properties, the local-scale phenomena (local wind patterns in the fjord and surface coupling) also had an influence. Moreover, this suggests that local boundary layer processes should be described in models in order to present low-level MPC properties accurately.


2020 ◽  
Author(s):  
Jan Chylik ◽  
Stephan Mertes ◽  
Roel Neggers

<p>Arctic mixed-phase clouds are still not properly represented in weather forecast and climate models. Recent field campaigns in the Arctic have successfully probed low level mixed-phase clouds, however it remains difficult to gain understanding of this complex system from observational datasets alone. Complementary high-resolution simulations, properly constrained by relevant measurements, can serve as a virtual laboratory that provides a deeper insight into a developing boundary layer in the Arctic.</p><p><br>Our study focus on the impact of variability in cloud condensation nuclei (CCN) concentrations on the turbulence in Arctic mixed-phase clouds. Large-Eddy Simulations of convective mixed-phase clouds over open water were performed as observed during the ACLOUD campaign, which took place in Fram Strait west of Svalbard in May and June 2017. The Dutch Atmospheric Large Eddy Simulation (DALES) is used including a well-established double-moment mixed-phase microphysics scheme of Seifert & Beheng.</p><p><br>The results highlight various impact mechanisms of CCN on the boundary layer thermodynamic state, turbulence, and clouds. Lower CCN concentrations generally lead to decreased turbulence near the cloud top. However, they can also enhance the turbulence in the lower part of the boundary layer due to increased amount of sublimation of ice hydrometeors. Further implications for the role of mixed-phase clouds in the Arctic Amplification will be discussed.</p>


2021 ◽  
Author(s):  
Christoph Braun ◽  
Aiko Voigt ◽  
Johannes Hörner ◽  
Joaquim G. Pinto

<p>Stable waterbelt climate states with close to global ice cover challenge the classical Snowball Earth hypothesis because they provide a robust explanation for the survival of advanced marine species during the Neoproterozoic glaciations (1000 – 541 Million years ago). Whether Earth’s climate stabilizes in a waterbelt state or rushes towards a Snowball state is determined by the magnitude of the ice-albedo feedback in the subtropics, where dark, bare sea ice instead of snow-covered sea ice prevails. For a given bare sea-ice albedo, the subtropical ice-albedo feedback and thus the stable range of the waterbelt climate regime is sensitive to the albedo over ice-free ocean, which is largely determined by shortwave cloud-radiative effects (CRE). In the present-day climate, CRE are known to dominate the spread of climate sensitivity across global climate models. We here study the impact of uncertainty associated with CRE on the existence of geologically relevant waterbelt climate regimes using two global climate models and an idealized energy balance model. We find that the stable range of the waterbelt climate regime is very sensitive to the abundance of subtropical low-level mixed-phase clouds. If subtropical cloud cover is low, climate sensitivity becomes so high as to inhibit stable waterbelt states.</p><p>The treatment of mixed-phase clouds is highly uncertain in global climate models. Therefore we aim to constrain the uncertainty associated with their CRE by means of a hierarchy of global and regional simulations that span horizontal grid resolutions from 160 km to 300m, and in particular include large eddy simulations of subtropical mixed-phase clouds located over a low-latitude ice edge. In the cold waterbelt climate subtropical CRE arise from convective events caused by strong meridional temperature gradients and stratocumulus decks located in areas of large-scale descending motion. We identify the latter to dominate subtropical CRE and therefore focus our large eddy simulations on subtropical stratocumulus clouds. By conducting simulations with two extreme scenarios for the abundance of atmospheric mineral dust, which serves as ice-nucleating particles and therefore can control mixed-phase cloud physics, we aim to estimate the possible spread of CRE associated with subtropical mixed-phase clouds. From this estimate we may assess whether Neoproterozoic low-level cloud abundance may have been high enough to sustain a stable waterbelt climate regime.</p>


2022 ◽  
pp. 1-48
Author(s):  
Yi Ming

Abstract A negative shortwave cloud feedback associated with higher extratropical liquid water content in mixed-phase clouds is a common feature of global warming simulations, and multiple mechanisms have been hypothesized. A set of process-level experiments performed with an idealized global climate model (a dynamical core with passive water and cloud tracers and full Rotstayn-Klein single-moment microphysics) show that the common picture of the liquid water path (LWP) feedback in mixed-phase clouds being controlled by the amount of ice susceptible to phase change is not robust. Dynamic condensate processes—rather than static phase partitioning—directly change with warming, with varied impacts on liquid and ice amounts. Here, three principal mechanisms are responsible for the LWP response, namely higher adiabatic cloud water content, weaker liquid-to-ice conversion through the Bergeron-Findeisen process, and faster melting of ice and snow to rain. Only melting is accompanied by a substantial loss of ice, while the adiabatic cloud water content increase gives rise to a net increase in ice water path (IWP) such that total cloud water also increases without an accompanying decrease in precipitation efficiency. Perturbed parameter experiments with a wide range of climatological LWP and IWP demonstrate a strong dependence of the LWP feedback on the climatological LWP and independence from the climatological IWP and supercooled liquid fraction. This idealized setup allows for a clean isolation of mechanisms and paints a more nuanced picture of the extratropical mixed-phase cloud water feedback than simple phase change.


2021 ◽  
Author(s):  
Jan Chylik ◽  
Roel Neggers

<p>The proper representation of Arctic mixed-phased clouds remains a challenge in both weather forecast and climate models. Amongst the contributing factors is the complexity of turbulent properties of clouds. While the effect of evaporating hydrometeors on turbulent properties of the boundary layer has been identified in other latitudes, the extent of similar studies in the Arctic has been so far limited.</p><p>Our study focus on the impact of heat release from mixed-phase microphysical processes on the turbulent properties of the convective low-level clouds in the Arctic. We  employ high-resolution simulations, properly constrained by relevant measurements.<br>Semi-idealised model cases are based on convective clouds observed during the recent campaign in the Arctic: ACLOUD, which took place May--June 2017 over Fram Strait. The simulations are performed in Dutch Atmospheric Large Eddy Simulation (DALES) with double-moment mixed-phase microphysics scheme of Seifert & Beheng.</p><p>The results indicate an enhancement of boundary layer turbulence is some convective regimes.<br>Furthermore, results are sensitive to aerosols concentrations. Additional implications for the role of mixed-phase clouds in the Arctic Amplification will be discussed.</p>


1996 ◽  
Vol 310 ◽  
pp. 139-179 ◽  
Author(s):  
Robert M. Kerr

Using direct simulations of the incompressible Navier-Stokes equations with rigid upper and lower boundaries at fixed temperature and periodic sidewalls, scaling with respect to Rayleigh number is determined. At large aspect ratio (6:6:1) on meshes up to 288 × 288 × 96, a single scaling regime consistent with the properties of ‘hard’ convective turbulence is found for Pr = 0.7 between Ra = 5 × 104 and Ra = 2 × 107. The properties of this regime include Nu ∼ RaβT with βT = 0.28 ≈ 2/7, exponential temperature distributions in the centre of the cell, and velocity and temperature scales consistent with experimental measurements. Two velocity boundary-layer thicknesses are identified, one outside the thermal boundary layer that scales as Ra−1/7 and the other within it that scales as Ra−3/7. Large-scale shears are not observed; instead, strong local boundary-layer shears are observed in regions between incoming plumes and an outgoing network of buoyant sheets. At the highest Rayleigh number, there is a decade where the energy spectra are close to k−5/3 and temperature variance spectra are noticeably less steep. It is argued that taken together this is good evidence for ‘hard’ turbulence, even if individually each of these properties might have alternative explanations.


2010 ◽  
Vol 10 (21) ◽  
pp. 10541-10559 ◽  
Author(s):  
S. J. Abel ◽  
D. N. Walters ◽  
G. Allen

Abstract. Observations in the subtropical southeast Pacific obtained during the VOCALS-REx field experiment are used to evaluate the representation of stratocumulus cloud in the Met Office forecast model and to identify key areas where model biases exist. Marked variations in the large scale structure of the cloud field were observed during the experiment on both day-to-day and on diurnal timescales. In the remote maritime region the model is shown to have a good representation of synoptically induced variability in both cloud cover and marine boundary layer depth. Satellite observations show a strong diurnal cycle in cloud fraction and liquid water path in the stratocumulus with enhanced clearances of the cloud deck along the Chilean and Peruvian coasts on certain days. The model accurately simulates the phase of the diurnal cycle but is unable to capture the coastal clearing of cloud. Observations along the 20° S latitude line show a gradual increase in the depth of the boundary layer away from the coast. This trend is well captured by the model (typical low bias of 200 m) although significant errors exist at the coast where the model marine boundary layer is too shallow and moist. Drizzle in the model responds to changes in liquid water path in a manner that is consistent with previous ship-borne observations in the region although the intensity of this drizzle is likely to be too high, particularly in the more polluted coastal region where higher cloud droplet number concentrations are typical. Another mode of variability in the cloud field that the model is unable to capture are regions of pockets of open cellular convection embedded in the overcast stratocumulus deck and an example of such a feature that was sampled during VOCALS-REx is shown.


Author(s):  
Ben Kravitz ◽  
Hailong Wang ◽  
Philip J. Rasch ◽  
Hugh Morrison ◽  
Amy B. Solomon

A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN), either through geoengineering or other increased sources of Arctic aerosols. An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Albedo increases are stronger for pure liquid clouds than mixed-phase clouds. Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus, the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol–cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation owing to precipitation changes are small. According to these results, which are dependent upon the representation of ice nucleation processes in the employed microphysical scheme, Arctic geoengineering is unlikely to be effective as the sole means of altering the global radiation budget but could have substantial local radiative effects.


Sign in / Sign up

Export Citation Format

Share Document