scholarly journals Heterogeneous Formation of Particulate Nitrate under Ammonium-rich Regime during the high PM<sub>2.5</sub> events in Nanjing, China

2019 ◽  
Author(s):  
Yu-Chi Lin ◽  
Yan-Lin Zhang ◽  
Mei-Yi Fan ◽  
Mengying Bao

Abstract. Particulate nitrate (NO3−) not only influences regional climates but also contributes to the acidification of terrestrial and aquatic ecosystems. In 2016 and 2017, four intensive on-line measurements of water-soluble ions in PM2.5 were conducted in Nanjing City to investigate the potential formation mechanisms of particulate nitrate. During the sampling periods, NO3− was the most predominant species, accounting for 35 % of the total water-soluble inorganic ions, followed by SO42− (33 %) and NH4+ (24 %). Significant enhancements of nitrate aerosols in terms of both absolute concentrations and relative abundances suggested that NO3− was a major contributing species to high-PM2.5 events (hourly PM2.5 ≥ 150 μg m−3). High NO3− concentrations mainly occurred under NH4+-rich conditions, implying that the formation of nitrate aerosols in Nanjing involved NH3. During the high-PM2.5 events, the nitrogen conversion ratios (Fn) were positively correlated with the aerosol liquid water content (ALWC, R = 0.75, p 

2020 ◽  
Vol 20 (6) ◽  
pp. 3999-4011 ◽  
Author(s):  
Yu-Chi Lin ◽  
Yan-Lin Zhang ◽  
Mei-Yi Fan ◽  
Mengying Bao

Abstract. Particulate nitrate (NO3-) not only influences regional climates but also contributes to the acidification of terrestrial and aquatic ecosystems. In 2016 and 2017, four intensive online measurements of water-soluble ions in PM2.5 were conducted in Nanjing City in order to investigate the potential formation mechanisms of particulate nitrate. During the sampling periods, NO3- was the predominant species, accounting approximately for 35 % of the total water-soluble inorganic ions, followed by SO42- (33 %) and NH4+ (24 %). Significant enhancements of nitrate aerosols in terms of both absolute concentrations and relative abundances suggested that NO3- was a major contributing species to high-PM2.5 events (hourly PM2.5≥150 µg m−3). High NO3- concentrations mainly occurred under NH4+-rich conditions, implying that the formation of nitrate aerosols in Nanjing involved NH3. During the high-PM2.5 events, the nitrogen conversion ratios (Fn) were positively correlated with the aerosol liquid water content (ALWC; R>0.72 and p<0.05). Meanwhile, increasing NO3- concentrations regularly coincided with increasing ALWC and decreasing Ox (Ox=O3+NO2). These results suggested that the heterogeneous reaction was probably a major mechanism of nitrate formation during the high-PM2.5 events. Moreover, the average production rate of NO3- by heterogeneous processes was estimated to be 12.6 % h−1 (4.1 µg m−3 h−1), which was much higher than that (2.5 % h−1; 0.8 µg m−3 h−1) of gas-phase reactions. This can also explain the abrupt increases in nitrate concentrations during the high-PM2.5 events. Utilizing the ISORROPIA II model, we found that nitrate aerosol formation in Nanjing during the high-PM2.5 events was HNO3 limited. This indicated that control of NOx emissions will be able to efficiently reduce airborne particulate nitrate concentrations and improve the air quality in this industrial city.


2020 ◽  
Vol 194 ◽  
pp. 04058
Author(s):  
Dongqing Fang ◽  
Junli Jin ◽  
Wei Huang ◽  
Yong Zhang ◽  
Wanqi Sun ◽  
...  

In order to understand the seasonal levels, formation mechanism and atmospheric chemical behaviours of water-soluble ions of PM10 in the Yangtze River Delta (YRD) region, aerosol samples were collected from January 2nd to December 28th, 2017 at a WMO/GAW regional background station in Lin’an. The concentrations of PM mass and nine water-soluble inorganic ions were obtained. The annual average concentration of PM10 was 59.9±33.9 μg m−3, lower than those reported in previous studies, indicating air quality of YRD region was improved. Nine water-soluble inorganic ions was accounted for 30.2-45.1% of the total PM mass, while ammonium (NH4+), sulfate (SO42+), as well as nitrate (NO3-) were the major ions which contributed 86.3% to total ions. The NO3- concentration was lowest in summer but highest in winter, suggesting it was likely influenced by thermodynamics. The levels of SO42- in spring and winter were related to photochemical reaction and regional transportation. Except for the SNA, Ca2+ was highest in four seasons likely due to sand storm and road fugitive dust. The annual mean ratio of [NO3-]/[SO42-] was nearly to 1, indicating mobile and stationary sources were equally important in Lin’an. The mean nitrogen oxidation ratio (NOR) and sulfur oxidation ratio (SOR) were 0.22±0.13 and 0.41±0.13, respectively, suggesting secondary formation was significant in the atmosphere at the background station of YRD region.


Atmosphere ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 78 ◽  
Author(s):  
Yuan Chen ◽  
Shao-dong Xie ◽  
Bin Luo ◽  
Chongzhi Zhai

To track the particulate pollution in Sichuan Basin, sample filters were collected in three urban sites. Characteristics of water-soluble inorganic ions (WSIIs) were explored and their sources were analyzed by principal component analysis (PCA). During 2012–2013, the PM2.5 concentrations were 86.7 ± 49.7 μg m−3 in Chengdu (CD), 78.6 ± 36.8 μg m−3 in Neijiang (NJ), and 71.7 ± 36.9 μg m−3 in Chongqing (CQ), respectively. WSIIs contributed about 50% to PM2.5, and 90% of them were secondary inorganic ions. NH4+ and NO3− roughly followed the seasonal pattern of PM2.5 variations, whereas the highest levels of SO42− appeared in summer and autumn. PM2.5 samples were most acidic in autumn and winter, but were alkaline in spring. The aerosol acidity increased with the increasing level of anion equivalents. SO42− primarily existed in the form of (NH4)2SO4. Full neutralization of NH4+ to NO3− was only observed in low levels of SO42− + NO3−, and NO3− existed in various forms. SO42− and NO3− were formed mainly through homogeneous reactions, and there was the existence of heterogeneous reactions under high relative humidity. The main identified sources of WSIIs included coal combustion, biomass burning, and construction dust.


Author(s):  
Barbora Švédová ◽  
Helena Raclavská ◽  
Marek Kucbel ◽  
Jana Růžičková ◽  
Konstantin Raclavský ◽  
...  

This study investigates the chemical composition of water-soluble inorganic ions at eight localities situated in the Moravian–Silesian Region (the Czech Republic) at the border with Poland. Water-soluble inorganic ions were monitored in the winter period of 2018 (January, 11 days and February, 5 days). The set was divided into two periods: the acceptable period (the 24-h concentration of PM10 < 50 µg/m3) and the period with exceeded pollution (PM10 ˃ 50 µg/m3). Air quality in the Moravian–Silesian Region and Upper Silesia is among the most polluted in Europe, especially in the winter season when the concentration of PM10 is repeatedly exceeded. The information on the occurrence and behaviour of water-soluble inorganic ions in the air during the smog episodes in Europe is insufficient. The concentrations of water-soluble ions (chlorides, sulphates, nitrates, ammonium ions, potassium) during the exceeded period are higher by two to three times compared with the acceptable period. The major anions for both acceptable period and exceeded pollution are nitrates. During the period of exceeded pollution, percentages of water-soluble ions in PM10 decrease while percentages of carbonaceous matter and insoluble particles (fly ash) increase.


2017 ◽  
Vol 75 (2) ◽  
pp. 155-169 ◽  
Author(s):  
Telma Castro ◽  
Oscar Peralta ◽  
Dara Salcedo ◽  
José Santos ◽  
María I. Saavedra ◽  
...  

2016 ◽  
Vol 16 (11) ◽  
pp. 7357-7371 ◽  
Author(s):  
Mi Tian ◽  
Huanbo Wang ◽  
Yang Chen ◽  
Fumo Yang ◽  
Xiaohua Zhang ◽  
...  

Abstract. Extremely severe haze weather events occurred in many cities in China, especially in the east part of the country, in January 2013. Comprehensive measurements including hourly concentrations of PM2.5 and its major chemical components (water-soluble inorganic ions, organic carbon (OC), and elemental carbon (EC)) and related gas-phase precursors were conducted via an online monitoring system in Suzhou, a medium-sized city in Jiangsu province, just east of Shanghai. PM2.5 (particulate matter with an aerodynamic diameter of 2.5 µm or less) frequently exceeded 150 µg m−3 on hazy days, with the maximum reaching 324 µg m−3 on 14 January 2013. Unfavorable weather conditions (high relative humidity (RH), and low rainfall, wind speed, and atmospheric pressure) were conducive to haze formation. High concentrations of secondary aerosol species (including SO42−, NO3−, NH4+, and SOC) and gaseous precursors were observed during the first two haze events, while elevated primary carbonaceous species emissions were found during the third haze period, pointing to different haze formation mechanisms. Organic matter (OM), (NH4)2SO4, and NH4NO3 were found to be the major contributors to visibility impairment. High concentrations of sulfate and nitrate might be explained by homogeneous gas-phase reactions under low RH conditions and by heterogeneous processes under relatively high RH conditions. Analysis of air mass trajectory clustering and potential source contribution function showed that aerosol pollution in the studied areas was mainly caused by local activities and surrounding sources transported from nearby cities.


Sign in / Sign up

Export Citation Format

Share Document