scholarly journals Surface–atmosphere fluxes of volatile organic compounds in Beijing

Author(s):  
W. Joe F. Acton ◽  
Zhonghui Huang ◽  
Brian Davison ◽  
Will S. Drysdale ◽  
Pingqing Fu ◽  
...  

Abstract. Air pollution in Beijing has a major impact on public health and is therefore of concern to both policy makers and the general public. Volatile organic compounds (VOCs) are emitted from both anthropogenic and biogenic sources in urban environments and play an important role in atmospheric chemistry and hence atmospheric pollution through the formation of secondary organic aerosol and tropospheric ozone. Fluxes and mixing ratios of VOCs were recorded in two field campaigns as part of the Air Pollution and Human Health in a Chinese Megacity (APHH) project at the Institute of Atmospheric Physics (IAP) meteorological tower in central Beijing. These measurements represent the first eddy covariance flux measurements of VOCs in Beijing giving a top down estimation of VOC emissions from a central area of the city. These were then used to validate the Multi-resolution Emission Inventory for China (MEIC). The APHH winter and summer campaigns took place in November and December 2016 and May and June 2017 respectively. The largest VOC fluxes observed were of small oxygenated compounds such as methanol, ethanol + formic acid and acetaldehyde, with average emission rates of 8.02, 3.88 and 1.76 nmol m−2 s−1 respectively recorded in the summer campaign. In addition a large flux of isoprene was observed in the summer with an average flux of 4.63 nmol m−2 s−1. While oxygenated VOCs made up 60 % of the molar VOC flux measured, when fluxes were scaled by ozone formation potential and peroxyacyl nitrate (PAN) formation potential the high reactivity of isoprene and monoterpenes meant that these species represented 30 and 28 % of the flux contribution to ozone and PAN formation potential respectively. Comparison of measured fluxes with the emission inventory showed that the inventory failed to capture VOC emission at the local scale.

2020 ◽  
Vol 20 (23) ◽  
pp. 15101-15125
Author(s):  
W. Joe F. Acton ◽  
Zhonghui Huang ◽  
Brian Davison ◽  
Will S. Drysdale ◽  
Pingqing Fu ◽  
...  

Abstract. Mixing ratios of volatile organic compounds (VOCs) were recorded in two field campaigns in central Beijing as part of the Air Pollution and Human Health in a Chinese Megacity (APHH) project. These data were used to calculate, for the first time in Beijing, the surface–atmosphere fluxes of VOCs using eddy covariance, giving a top-down estimation of VOC emissions from a central area of the city. The results were then used to evaluate the accuracy of the Multi-resolution Emission Inventory for China (MEIC). The APHH winter and summer campaigns took place in November and December 2016 and May and June 2017, respectively. The largest VOC fluxes observed were of small oxygenated compounds such as methanol, ethanol + formic acid and acetaldehyde, with average emission rates of 8.31 ± 8.5, 3.97 ± 3.9 and 1.83 ± 2.0 nmol m−2 s−1, respectively, in the summer. A large flux of isoprene was observed in the summer, with an average emission rate of 5.31 ± 7.7 nmol m−2 s−1. While oxygenated VOCs made up 60 % of the molar VOC flux measured, when fluxes were scaled by ozone formation potential and peroxyacyl nitrate (PAN) formation potential the high reactivity of isoprene and monoterpenes meant that these species represented 30 % and 28 % of the flux contribution to ozone and PAN formation potential, respectively. Comparison of measured fluxes with the emission inventory showed that the inventory failed to capture the magnitude of VOC emissions at the local scale.


2010 ◽  
Vol 10 (17) ◽  
pp. 8391-8412 ◽  
Author(s):  
B. Langford ◽  
P. K. Misztal ◽  
E. Nemitz ◽  
B. Davison ◽  
C. Helfter ◽  
...  

Abstract. As part of the OP3 field study of rainforest atmospheric chemistry, above-canopy fluxes of isoprene, monoterpenes and oxygenated volatile organic compounds were made by virtual disjunct eddy covariance from a South-East Asian tropical rainforest in Malaysia. Approximately 500 hours of flux data were collected over 48 days in April–May and June–July 2008. Isoprene was the dominant non-methane hydrocarbon emitted from the forest, accounting for 80% (as carbon) of the measured emission of reactive carbon fluxes. Total monoterpene emissions accounted for 18% of the measured reactive carbon flux. There was no evidence for nocturnal monoterpene emissions and during the day their flux rate was dependent on both light and temperature. The oxygenated compounds, including methanol, acetone and acetaldehyde, contributed less than 2% of the total measured reactive carbon flux. The sum of the VOC fluxes measured represents a 0.4% loss of daytime assimilated carbon by the canopy, but atmospheric chemistry box modelling suggests that most (90%) of this reactive carbon is returned back to the canopy by wet and dry deposition following chemical transformation. The emission rates of isoprene and monoterpenes, normalised to 30 °C and 1000 μmol m−2 s−1 PAR, were 1.6 mg m−2 h−1 and 0.46mg m−2 h−1 respectively, which was 4 and 1.8 times lower respectively than the default value for tropical forests in the widely-used MEGAN model of biogenic VOC emissions. This highlights the need for more direct canopy-scale flux measurements of VOCs from the world's tropical forests.


2013 ◽  
Vol 13 (11) ◽  
pp. 30187-30232 ◽  
Author(s):  
E. Bourtsoukidis ◽  
J. Williams ◽  
J. Kesselmeier ◽  
S. Jacobi ◽  
B. Bonn

Abstract. Biogenic volatile organic compounds (BVOC) are substantial contributors to atmospheric chemistry and physics and demonstrate the close relationship between biosphere and atmosphere. Their emission rates are highly sensitive to meteorological and environmental changes with concomitant impacts on atmospheric chemistry. We have investigated seasonal isoprenoid and oxygenated VOC (oxVOC) fluxes from a Norway spruce (Picea abies) tree in Central Germany and explored the emission responses under various atmospheric conditions. Emission rates were quantified by using dynamic branch enclosure and Proton Transfer Reaction–Mass Spectrometry (PTR-MS) techniques. Additionally, ambient mixing ratios were derived through application of a new box model treatment on the dynamic chamber measurements. These are compared in terms of abundance and origin with the corresponding emissions. Isoprenoids govern the BVOC emissions from Norway spruce, with monoterpenes and sesquiterpenes accounting for 50.8 ± 7.2% and 19.8 ± 8.1% respectively of the total emissions. Normalizing the VOC emission rates, we have observed a trend of reduction of carbon containing emissions from April to November, with an enhancement of oxVOC. Highest emission rates were observed in June for all measured species, with the exception of sesquiterpenes that were emitted most strongly in April. We exploit the wide range of conditions experienced at the site to filter the dataset with a combination of temperature, ozone and absolute humidity values in order to derive the emission potential and temperature dependency development for the major chemical species investigated. A profound reduction of monoterpene emission potential (E30) and temperature dependency (β) was found under low temperature regimes, combined with low ozone levels (E30MT, LTLO3=56 ± 9.1 ng g(dw)−1 h−1, βMT,LTLO3=0.03±0.01 K−1) while a combination of both stresses was found to alter their emissions responses with respect to temperature substantially (E30MT,HTHO3=1420.1 ± 191.4 ng g(dw)−1 h−1, βMT,HTHO3=0.15 ± 0.02 K−1). Moreover, we have explored compound relationships under different atmospheric condition sets, addressing possible co-occurrence of emissions under specific conditions. Finally, we evaluate the temperature dependent algorithm that seems to describe the temperature dependent emissions. Highest emission deviations were observed for monoterpenes and these emission fluctuations were attributed to a fraction which is triggered by an additional light dependency.


2021 ◽  
Vol 21 (17) ◽  
pp. 13655-13666
Author(s):  
Ziwei Mo ◽  
Ru Cui ◽  
Bin Yuan ◽  
Huihua Cai ◽  
Brian C. McDonald ◽  
...  

Abstract. Non-methane volatile organic compounds (NMVOCs) are important precursors of ozone (O3) and secondary organic aerosol (SOA), which play key roles in tropospheric chemistry. A huge amount of NMVOC emissions from solvent use are complicated by a wide spectrum of sources and species. This work presents a long-term NMVOC emission inventory of solvent use during 2000–2017 in China. Based on a mass (material) balance method, NMVOC emissions were estimated for six categories, including coatings, adhesives, inks, pesticides, cleaners, and personal care products. The results show that NMVOC emissions from solvent use in China increased rapidly from 2000 to 2014 then kept stable after 2014. The total emission increased from 1.6 Tg (1.2–2.2 Tg at 95 % confidence interval) in 2000 to 10.6 Tg (7.7–14.9 Tg) in 2017. The substantial growth is driven by the large demand for solvent products in both industrial and residential activities. However, increasing treatment facilities in the solvent-related factories in China restrained the continued growth of solvent NMVOC emissions in recent years. Rapidly developing and heavily industrialized provinces such as Jiangsu, Shandong, and Guangdong contributed significantly to the solvent use emissions. Oxygenated VOCs, alkanes, and aromatics were the main components, accounting for 42 %, 28 %, and 21 % of total NMVOC emissions in 2017, respectively. Our results and previous inventories are generally comparable within the estimation uncertainties (−27 %–52 %). However, there exist significant differences in the estimates of sub-categories. Personal care products were a significant and quickly rising source of NMVOCs, which were probably underestimated in previous inventories. Emissions from solvent use were growing faster compared with transportation and combustion emissions, which were relatively better controlled in China. Environmentally friendly products can reduce the NMVOC emissions from solvent use. Supposing all solvent-based products were substituted with water-based products, it would result in 37 %, 41 %, and 38 % reduction of emissions, ozone formation potential (OFP), and secondary organic aerosol formation potential (SOAP), respectively. These results indicate there is still large potential for NMVOC reduction by reducing the utilization of solvent-based products and implementation of end-of-pipe controls across industrial sectors.


2021 ◽  
pp. 14-28
Author(s):  
Narita Fakkaew ◽  
Surat Bualert ◽  
Thunyapat Thongyen ◽  
Thitima Rungratanaubon

Volatile organic compounds (VOCs) play an important role in atmospheric chemistry due to their high reactivity—reacting photochemically with oxides of nitrogen (NOx) in the presence of solar radiation forming tropospheric ozone (O3). Each VOC species have different effects on ozone formation according to the rates and pathways of their reactions. The objective of this study aims to examine ozone formation from the estimation of ozone formation potential (OFP). The observation of 29 VOCs species was carried out in the urban area near the roads of Bangkok, Thailand. Measurements were carried out during the dry season, from 16th February to 15th March, 2018. The air samples were analyzed using gas chromatography flame ionization detector (GC-FID). The results showed that toluene had the highest VOCs concentration followed by propane, and carbon tetrachloride (CCl4). The average ratio of benzene to toluene (B/T) and toluene to benzene (T/B) indicate that both toluene and benzene emitted from industrial area and vehicular emission. Ratio of m/p-xylene to benzene (m/p-X/B) indicate that BTEX emitted far from the source. The ozone formation potential indicated that toluene was the main VOC contributing to the total ozone formation. High VOCs concentration in monitoring site was influenced by vehicular sources and the sea breeze brought the pollutants back to the land.


2010 ◽  
Vol 10 (5) ◽  
pp. 11975-12021 ◽  
Author(s):  
B. Langford ◽  
P. K. Misztal ◽  
E. Nemitz ◽  
B. Davison ◽  
C. Helfter ◽  
...  

Abstract. As part of the OP3 field study of rainforest atmospheric chemistry, above-canopy fluxes of isoprene, monoterpenes and oxygenated volatile organic compounds were made by virtual disjunct eddy covariance from a South-East Asian tropical rainforest in Malaysia. Approximately 500 hours of flux data were collected over 48 days in April–May and June–July 2008. Isoprene was the dominant non-methane hydrocarbon emitted from the forest, accounting for 80% (as carbon) of the measured emission of reactive carbon fluxes. Total monoterpene emissions accounted for 18% of the measured reactive carbon flux. Monoterpenes were not emitted at night, and during the day their flux rate was dependent on both light and temperature. The oxygenated compounds, including methanol, acetone and acetaldehyde, contributed less than 2% of the total measured reactive carbon flux. The sum of the VOC fluxes measured represents a 0.4% loss of daytime assimilated carbon by the canopy, but atmospheric chemistry box modelling suggests that most (90%) of this reactive carbon is returned back to the canopy by wet and dry deposition following chemical transformation. The emission rates of isoprene and monoterpenes, normalised to 30 °C and 1000 μmol m−2 s−1 PAR, were 1.6 mg m−2 h−1 and 0.46 mg m−2 h−1 respectively, which was 4 and 1.7 times lower respectively than the default value for tropical forests in the widely-used MEGAN model of biogenic VOC emissions. This highlights the need for more direct canopy-scale flux measurements of VOCs from the world's tropical forests.


2014 ◽  
Vol 14 (13) ◽  
pp. 6495-6510 ◽  
Author(s):  
E. Bourtsoukidis ◽  
J. Williams ◽  
J. Kesselmeier ◽  
S. Jacobi ◽  
B. Bonn

Abstract. Biogenic volatile organic compounds (BVOCs) are substantial contributors to atmospheric chemistry and physics and demonstrate the close relationship between biosphere and atmosphere. Their emission rates are highly sensitive to meteorological and environmental changes with concomitant impacts on atmospheric chemistry. We have investigated seasonal isoprenoid and oxygenated VOC (oxVOC) fluxes from a Norway spruce (Picea abies) tree in central Germany and explored the emission responses under various atmospheric conditions. Emission rates were quantified by using dynamic branch enclosure and proton-transfer-reaction mass spectrometry (PTR-MS) techniques. Additionally, ambient mixing ratios were derived through application of a new box model treatment on the dynamic chamber measurements. These are compared in terms of abundance and origin with the corresponding emissions. Isoprenoids dominate the BVOC emissions from Norway spruce, with monoterpenes and sesquiterpenes accounting for 50.8 ± 7.2% and 19.8 ± 8.1% respectively of the total emissions. Normalizing the VOC emission rates, we have observed a trend of reduction of carbon-containing emissions from April to November, with an enhancement of oxVOC. Highest emission rates were observed in June for all measured species, with the exception of sesquiterpenes, which were emitted most strongly in April. Finally, we evaluate the temperature-dependent algorithm that seems to describe the temperature-dependent emissions of methanol, acetaldehyde and monoterpenes but only with the use of the monthly derived values for emission potential, Es, and temperature dependency, β factor.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1592
Author(s):  
Olga P. Ibragimova ◽  
Anara Omarova ◽  
Bauyrzhan Bukenov ◽  
Aray Zhakupbekova ◽  
Nassiba Baimatova

Air pollution is one of the primary sources of risk to human health in the world. In this study, seasonal and spatial variations of multiple volatile organic compounds (VOCs) were measured at six sampling sites in Almaty, Kazakhstan. The seasonal and spatial variations of 19 VOCs were evaluated in 2020, including the periods before and after COVID-19 lockdown. The concentrations of 9 out of 19 VOCs had been changed significantly (p < 0.01) during 2020. The maximum concentrations of total VOCs (TVOCs) were observed on 15, 17, and 19 January and ranged from 233 to 420 µg m−3. The spatial distribution of TVOCs concentrations in the air during sampling seasons correlated with the elevation and increased from southern to northern part of Almaty, where Combined Heat and Power Plants are located. The sources of air pollution by VOCs were studied by correlations analysis and BTEX ratios. The ranges of toluene to benzene ratio and benzene, toluene, and ethylbenzene demonstrated two primary sources of BTEX in 2020: traffic emissions and biomass/biofuel/coal burning. Most of m-, p-xylenes to ethylbenzene ratios in this study were lower than 3 in all sampling periods, evidencing the presence of aged air masses at studied sampling sites from remote sources.


Sign in / Sign up

Export Citation Format

Share Document